scholarly journals Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein

Author(s):  
Hideki Tani ◽  
Long Tan ◽  
Miyuki Kimura ◽  
Yoshihiro Yoshida ◽  
Hiroshi Yamada ◽  
...  

AbstractSARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an immunofluorescence assay (IFA). The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.

2020 ◽  
Author(s):  
Hideki Tani ◽  
Long Tan ◽  
Miyuki Kimura ◽  
Yoshihiro Yoshida ◽  
Hiroshi Yamada ◽  
...  

Abstract Background:SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. Methods:To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an immunofluorescence assay (IFA). Results:The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. Conclusions:In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hideki Tani ◽  
Miyuki Kimura ◽  
Long Tan ◽  
Yoshihiro Yoshida ◽  
Tatsuhiko Ozawa ◽  
...  

Abstract Background SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. Methods To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). Results The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. Conclusions In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikail Dogan ◽  
Lina Kozhaya ◽  
Lindsey Placek ◽  
Courtney Gunter ◽  
Mesut Yigit ◽  
...  

AbstractDevelopment of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 994
Author(s):  
Ahmed Majdi K. Tolah ◽  
Sayed S. Sohrab ◽  
Khaled Majdi K. Tolah ◽  
Ahmed M. Hassan ◽  
Sherif A. El-Kafrawy ◽  
...  

The unusual cases of pneumonia outbreak were reported from Wuhan city in late December 2019. Serological testing provides a powerful tool for the identification of prior infection and for epidemiological studies. Pseudotype virus neutralization assays are widely used for many viruses and applications in the fields of serology. The accuracy of pseudotype neutralizing assay allows for its use in low biosafety lab and provides a safe and effective alternative to the use of wild-type viruses. In this study, we evaluated the performance of this assay compared to the standard microneutralization assay as a reference. The lentiviral pseudotype particles were generated harboring the Spike gene of SARS-CoV-2. The generated pseudotype particles assay was used to evaluate the activity of neutralizing antibodies in 300 human serum samples from a COVID-19 sero-epidemiological study. Testing of these samples resulted in 55 positive samples and 245 negative samples by pseudotype viral particles assay while microneutralization assay resulted in 64 positive and 236 negative by MN assay. Compared to the MN, the pseudotyped viral particles assay showed a sensitivity of 85.94% and a specificity of 100%. Based on the data generated from this study, the pseudotype-based neutralization assay showed a reliable performance for the detection of neutralizing antibodies against SARS-CoV-2 and can be used safely and efficiently as a diagnostic tool in a biosafety level 2 laboratory.


2020 ◽  
Vol 47 (12) ◽  
pp. 1760-1767
Author(s):  
Sarah M. Wade ◽  
Trudy McGarry ◽  
Siobhan C. Wade ◽  
Ursula Fearon ◽  
Douglas J. Veale

ObjectiveMicroRNA (miRNA) are small endogenous regulatory RNA molecules that have emerged as potential therapeutic targets and biomarkers in autoimmunity. Here, we investigated serum miRNA levels in patients with psoriatic arthritis (PsA) and further assessed a serum miRNA signature in therapeutic responder versus nonresponder PsA patients.MethodsSerum samples were collected from healthy controls (HC; n = 20) and PsA patients (n = 31), and clinical demographics were obtained. To examine circulatory miRNA in serum from HC and PsA patients, a focused immunology miRNA panel was analyzed utilizing a miRNA Fireplex assay (FirePlex Bioworks Inc.). MiRNA expression was further assessed in responders versus nonresponders according to the European League Against Rheumatism response criteria.ResultsSix miRNA (miR-221-3p, miR-130a-3p, miR-146a-5p, miR-151-5p, miR-26a-5p, and miR-21-5p) were significantly higher in PsA compared to HC (all P < 0.05), with high specificity and sensitivity determined by receiver-operating characteristic curve analysis. Analysis of responder versus nonresponders demonstrated higher baseline levels of miR-221-3p, miR-130a-3p, miR-146a-5p, miR-151-5p, and miR-26a-5p were associated with therapeutic response.ConclusionThis study identified a 6-serum microRNA signature that could be attractive candidates as noninvasive markers for PsA and may help to elucidate the disease pathogenesis.


2021 ◽  
Author(s):  
Syed Hani Abidi ◽  
Kehkeshan Imtiaz ◽  
Akbar Kanji ◽  
Shama Qaiser ◽  
Erum Khan ◽  
...  

Abstract Background Individuals recovering from COVID-19 are shown to have antibodies against the Spike and other structural proteins. Antibodies against Spike have been shown to display viral neutralization. However, not all antibodies against Spike have neutralizing ability and some may be cross-reactive. There is a need for easy-to-use SARS-CoV-2 neutralizing assays that allow the determination of virus neutralizing activity in sera of individuals. Here we describe a PCR-based micro-neutralization assay that can be used to evaluate the viral neutralization titers of serum from SARS-CoV-2 infected individuals. Methods The SARS-CoV-2 strain used was isolated from a nasopharyngeal specimen of a COVID-19 case. The limiting dilution method was used to obtain a 50% tissue culture infective dose (TCID50) of Vero cells. For the micro‐neutralization assay, 19 serum samples, with positive IgG titers against Spike receptor binding domain (RBD) were tested. After 24 hours, infected cells were inspected for the presence of the cytopathic effect, then lysed and RNA RT-PCR of SARS-CoV-2. The Ct values were used to calculate percent neutralization/inhibition of SARS-CoV-2. Results Out of 19 samples, 13 samples gave 100% neutralization at all dilutions, while 4 samples gave neutralization at lower dilution, while one sample did not give any neutralization. The correlation between RBD OD and neutralization potential was found to be statistically correlated. Conclusion We describe a rapid RT-PCR based SARS-CoV-2 microneutralization assay for detection of neutralizing antibodies. This can effectively be used to test anti-viral activity of serum antibodies for investigation of both disease-driven and vaccine-induced responses.


Author(s):  
Lourdes Lledó ◽  
Consuelo Giménez-Pardo ◽  
María Isabel Gegúndez

There is little information on Thogoto virus (THOV) and Dhori virus (DHOV)infection in Spain. A total of 283 serum samples from 150 human subjects (78 males, 72 females) bitten by ticks, as well as samples from 120 sheep (one per animal), were studied by immunofluorescence assay. All human and animal subjects were from the province of Palencia in northern Spain. Eight human subjects had antibodies against THOV (seroprevalence: 5.3%) and six had antibodies against DHOV (seroprevalence: 4%); titers ranged between 1/32–1/256 and 1/32–1/128, respectively. No significant differences were seen in seroprevalence in terms of gender or age, although people with antibodies were significantly more likely to have had contact with livestock for professional reasons. One subject with an acute infection had IgM antibodies to both viruses and seroconverted to IgG. For the sheep, 24 serum samples were positive for antibodies to THOV (seroprevalence: 20%) and 32 for antibodies to DHOV (seroprevalence: 26.8%); titers ranged between 1/16 and 1/128. The seroprevalence of both viruses was significantly higher in animals < 4 years of age. Together, these results reveal the circulation of DHOV and THOV in humans and sheep in the province of Palencia. Sheep might be used as indicators of the presence of these organisms.


2021 ◽  
Author(s):  
Simon Jochum ◽  
Imke Kirste ◽  
Sayuri Hortsch ◽  
Veit Peter Grunert ◽  
Holly Legault ◽  
...  

Background The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys® Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461). Methods Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57. ACOV2S results (shown in U/mL - equivalent to BAU/mL per the first WHO international standard) were compared with results from ELISAs specific to antibodies against the Spike protein (S-2P) and the receptor binding domain (RBD) as well as neutralization tests including nanoluciferase (nLUC80), live-virus (PRNT80), and a pseudovirus neutralizing antibody assay (PsVNA50). Results RBD-specific antibodies were already detectable by ACOV2S at the first time point of assessment (d15 after first vaccination), with seroconversion before in all but 2 participants (25 μg dose group); all had seroconverted by Day 29. Across all post-baseline visits, geometric mean concentration of antibody levels were 3.27-7.48-fold higher in the 100 μg compared with the 25 μg dose group. ACOV2S measurements were highly correlated with those from RBD ELISA (Pearson's r=0.938; p<0.0001) and S-2P ELISA (r=0.918; p<0.0001). For both ELISAs, heterogeneous baseline results and smaller increases in antibody levels following the second vs first vaccination compared with ACOV2S were observed. ACOV2S showed absence of any baseline noise indicating high specificity detecting vaccine-induced antibody response. Moderate-strong correlations were observed between ACOV2S and neutralization tests (nLUC80 r=0.933; PsVNA50, r=0.771; PRNT80, r=0.672; all p≤0.0001). Conclusion The Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) can be regarded as a highly valuable method to assess and quantify the presence of RBD-directed antibodies against SARS-CoV-2 following vaccination, and may indicate the presence of neutralizing antibodies. As a fully automated and standardized method, ACOV2S could qualify as the method of choice for consistent quantification of vaccine-induced humoral response.


2015 ◽  
Vol 22 (10) ◽  
pp. 1130-1132 ◽  
Author(s):  
Hugh W. F. Kingston ◽  
Stuart D. Blacksell ◽  
Ampai Tanganuchitcharnchai ◽  
Achara Laongnualpanich ◽  
Buddha Basnyat ◽  
...  

ABSTRACTThis study investigated the comparative accuracy of a recombinant 56-kDa type-specific antigen-based rapid diagnostic test (RDT) for scrub typhus for the detection of IgM antibodies by using conventional serology in well-characterized serum samples from undifferentiated febrile illness patients. The RDT showed high specificity and promising comparative accuracy, with 82% sensitivity and 98% specificity for samples defined positive at an IgM indirect immunofluorescence assay positivity cutoff titer of ≥1:1,600 versus 92% and 95% at ≥1:6,400, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Adeline Syin Lian Yeo ◽  
Anusyah Rathakrishnan ◽  
Seok Mui Wang ◽  
Sasheela Ponnampalavanar ◽  
Rishya Manikam ◽  
...  

Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.


Sign in / Sign up

Export Citation Format

Share Document