scholarly journals Facilitation and biodiversity jointly drive mutualistic networks

2020 ◽  
Author(s):  
Gianalberto Losapio ◽  
Elizabeth Norton Hasday ◽  
Xavier Espadaler ◽  
Christoph Germann ◽  
Javier Ortiz ◽  
...  

ABSTRACTFacilitation by legume nurse plants increase understorey diversity and support diverse ecological communities. In turn, biodiversity shapes ecological networks and supports ecosystem functioning. However, whether and how facilitation and increased biodiversity jointly influence community structure and ecosystem functioning remains unclear.We performed a field experiment disentangling the relative contribution of nurse plants and increasing understorey plant diversity in driving pollination interactions to quantify the direct and indirect contribution of facilitation and diversity to ecosystem functioning. This includes analysing pollinator communities in the following treatment combinations: (i) absence and presence of nurse plants, and (ii) understorey richness with none, one and three plant species.Facilitation by legume nurse plants and understorey diversity synergistically increase pollinator diversity. Our findings reflect diverse assemblages in which complementarity and cooperation among different plants result in no costs for individual species but benefits for the functioning of the community and the ecosystem. Drivers of network change are associated with increasing frequency of visits and non-additive changes in pollinator community composition and pollination niches.Synthesis Plant–plant facilitative systems, where a nurse shrub increases understorey plant diversity, positively influences mutualistic networks via both direct nurse effects and indirect plant diversity effects. Supporting such nurse systems is crucial not only for plant diversity but also for ecosystem functioning and services.

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e92517 ◽  
Author(s):  
Teresa Dias ◽  
Adelaide Clemente ◽  
Maria Amélia Martins-Loução ◽  
Lucy Sheppard ◽  
Roland Bobbink ◽  
...  

2018 ◽  
Author(s):  
Russell Dinnage ◽  
Alex Skeels ◽  
Marcel Cardillo

AbstractComparative models used to predict species threat status often combine variables measured at the species level with spatial variables, causing multiple statistical challenges, including phylogenetic and spatial non-independence. We present a novel bayesian approach for modelling threat status that simultaneously deals with both forms of non-independence and estimates their relative contribution, and we apply the approach to modelling threat status in the Australian plant genus Hakea. We find that after phylogenetic and spatial effects are accounted for, species with greater evolutionary distinctiveness and a shorter annual flowering period are more likely to be threatened. The model allows us to combine information on evolutionary history, species biology, and spatial data, to calculate latent extinction risk (potential for non-threatened species to become threatened), and estimate the most important drivers of risk for individual species. This could be of value for proactive conservation decision-making that targets species of concern before they become threatened.


2019 ◽  
Author(s):  
Mark K. L. Wong ◽  
Benoit Guénard ◽  
Owen T. Lewis

AbstractInvasive insects represent major threats to ecosystems worldwide. Yet their effects on the functional dimension of biodiversity, measured as the diversity and distribution of traits, are overlooked. Such measures often determine the resilience of ecological communities and the ecosystem processes they modulate. The fire ant Solenopsis invicta is a highly problematic invasive species occurring on five continents. Its impacts on the taxonomic diversity of native ant communities have been studied but its impacts on their functional diversity are unknown. Comparing invaded and uninvaded plots in tropical grasslands of Hong Kong, we investigated how the presence of S. invicta affects the diversity and distribution of ant species and traits within and across communities, the functional identities of communities, and functionally unique species. We calculated the functional diversity of individual species, including the trait variation from intraspecific polymorphisms, and scaled up these values to calculate functional diversity at the community level. Invasion had only limited effects on species richness and functional richness, which were 13% and 8.5% lower in invaded communities respectively. In contrast, invasion had pronounced effects on taxonomic and functional composition due to turnover in species and trait values. Furthermore, invaded communities were functionally more homogeneous, displaying 23% less turnover and 56% more redundancy than uninvaded communities, as well as greater clustering and lower divergence in trait values. Invaded communities had fewer functionally-unique individuals and were characterized by ant species with narrower heads and bodies and shorter mandibles. Our results suggest that studies based only on taxonomic measures of diversity or indices describing trait variety risk underestimating the full ramifications of invasions. Investigating the diversity and distributions of traits at species, community and landscape levels can reveal the cryptic impacts of alien species which, despite causing little taxonomic change, may substantially modify the structure and functioning of ecological communities.


2018 ◽  
Author(s):  
A. J. Fairbrass ◽  
M. Firman ◽  
C. Williams ◽  
G. J. Brostow ◽  
H. Titheridge ◽  
...  

SUMMARYCities support unique and valuable ecological communities, but understanding urban wildlife is limited due to the difficulties of assessing biodiversity. Ecoacoustic surveying is a useful way of assessing habitats, where biotic sound measured from audio recordings is used as a proxy for biodiversity. However, existing algorithms for measuring biotic sound have been shown to be biased by non-biotic sounds in recordings, typical of urban environments.We develop CityNet, a deep learning system using convolutional neural networks (CNNs), to measure audible biotic (CityBioNet) and anthropogenic (CityAnthroNet) acoustic activity in cities. The CNNs were trained on a large dataset of annotated audio recordings collected across Greater London, UK. Using a held-out test dataset, we compare the precision and recall of CityBioNet and CityAnthroNet separately to the best available alternative algorithms: four acoustic indices (AIs): Acoustic Complexity Index, Acoustic Diversity Index, Bioacoustic Index, and Normalised Difference Soundscape Index, and a state-of-the-art bird call detection CNN (bulbul). We also compare the effect of non-biotic sounds on the predictions of CityBioNet and bulbul. Finally we apply CityNet to describe acoustic patterns of the urban soundscape in two sites along an urbanisation gradient.CityBioNet was the best performing algorithm for measuring biotic activity in terms of precision and recall, followed by bulbul, while the AIs performed worst. CityAnthroNet outperformed the Normalised Difference Soundscape Index, but by a smaller margin than CityBioNet achieved against the competing algorithms. The CityBioNet predictions were impacted by mechanical sounds, whereas air traffic and wind sounds influenced the bulbul predictions. Across an urbanisation gradient, we show that CityNet produced realistic daily patterns of biotic and anthropogenic acoustic activity from real-world urban audio data.Using CityNet, it is possible to automatically measure biotic and anthropogenic acoustic activity in cities from audio recordings. If embedded within an autonomous sensing system, CityNet could produce environmental data for cites at large-scales and facilitate investigation of the impacts of anthropogenic activities on wildlife. The algorithms, code and pre-trained models are made freely available in combination with two expert-annotated urban audio datasets to facilitate automated environmental surveillance in cities.


Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e59031 ◽  
Author(s):  
Georgina E. Southon ◽  
Christopher Field ◽  
Simon J. M. Caporn ◽  
Andrea J. Britton ◽  
Sally A. Power

2020 ◽  
Author(s):  
Paul J. CaraDonna ◽  
Nickolas M. Waser

AbstractEcological communities consist of species that are joined in complex networks of interspecific interaction. The interactions that networks depict often form and dissolve rapidly, but this temporal variation is not well integrated into our understanding of the causes and consequences of network structure. If interspecific interactions exhibit temporal flexibility across time periods over which organisms co-occur, then the emergent structure of the corresponding network may also be temporally flexible, something that a temporally-static perspective would miss. Here, we use an empirical system to examine short-term flexibility in network structure (connectance, nestedness, and specialization), and in individual species interactions that contribute to that structure. We investigated weekly plant-pollinator networks in a subalpine ecosystem across three summer growing seasons. To link the interactions of individual species to properties of their networks, we examined weekly temporal variation in species’ contributions to network structure. As a test of the potential robustness of networks to perturbation, we also simulated the random loss of species from weekly networks. We then compared the properties of weekly networks to the properties of cumulative networks that aggregate field observations over each full season. A week-to-week view reveals considerable flexibility in the interactions of individual species and their contributions to network structure. For example, species that would be considered relatively generalized across their entire activity period may be much more specialized at certain times, and at no point as generalized as the cumulative network may suggest. Furthermore, a week-to-week view reveals corresponding temporal flexibility in network structure and potential robustness throughout each summer growing season. We conclude that short-term flexibility in species interactions leads to short-term variation in network properties, and that a season-long, cumulative perspective may miss important aspects of the way in which species interact, with implications for understanding their ecology, evolution, and conservation.


2020 ◽  
Author(s):  
Sebastian Fiedler ◽  
José A.F. Monteiro ◽  
Kristin B. Hulvey ◽  
Rachel J. Standish ◽  
Michael P. Perring ◽  
...  

ABSTRACTEcological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Successful realisation of such a strategy requires a fundamental mechanistic understanding of the link between ecosystem plant composition, plant traits and related ecosystem functions and services, as well as how climate change affects these relationships. An integrated approach of empirical research and simulation modelling with focus on plant traits can allow this understanding.Based on empirical data from a large-scale restoration project in a Mediterranean-type climate in Western Australia, we developed and validated the spatially explicit simulation model ModEST, which calculates coupled dynamics of nutrients, water and individual plants characterised by traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions (covering three ecosystem services), as well as trade-offs and synergies among the functions under current and future climatic conditions.Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity. In addition, we found that trade-offs and synergies among functions shifted with climate change.Synthesis and application. Our results imply that restoration ecologists will face a clear challenge to achieve their targets with respect to multifunctionality not only under current conditions, but also in the long-term. However, once ModEST is parameterized and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.


Sign in / Sign up

Export Citation Format

Share Document