scholarly journals Migration through a major Andean ecogeographic disruption as a driver of genotypic and phenotypic diversity in a wild tomato species

2020 ◽  
Author(s):  
Jacob B. Landis ◽  
Christopher M. Miller ◽  
Amanda K. Broz ◽  
Alexandra A. Bennett ◽  
Noelia Carrasquilla-Garcia ◽  
...  

AbstractThe large number of species on our planet arises from the phenotypic variation and reproductive isolation occurring at the population level. In this study, we sought to understand the origins of such population-level variation in defensive acylsugar chemistry and mating systems in Solanum habrochaites – a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-Associated-Digestion Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4-6 ancestral populations. Estimation of heterozygosity, fixation index, isolation by distance, and migration probabilities, allowed identification of multiple barriers to gene flow leading to the establishment of extant populations. One major barrier is the Amotape-Huancabamba Zone (AHZ) – a geographical feature in the Andes with high endemism, where the mountainous range breaks up into isolated microhabitats. The AHZ was associated with emergence of alleles for novel reproductive and acylsugar phenotypes. These alleles led to the evolution of self-compatibility in the northern populations, where alleles for novel defense-related enzyme variants were also found to be fixed. We identified geographical distance as a major force causing population differentiation in the central/southern part of the range, where S. habrochaites was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating new, reproductively isolated populations, and enhance our understanding of the microevolutionary processes that lay a path to speciation.

Author(s):  
Parvinderdeep Kahlon ◽  
Melissa Verin ◽  
Ralph Hückelhoven ◽  
Remco Stam

The wild tomato species Solanum chilense is divided in geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype vs. pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance properties can be observed between but also within populations at the level of individual plants. Data also did not reveal clear indications for complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggest that quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is likely not the result of specific adaptations of hosts to the pathogen but of basal defence responses that depend on the host genotype and are pathogen isolate-unspecific.


Genome ◽  
2014 ◽  
Vol 57 (3) ◽  
pp. 169-180 ◽  
Author(s):  
Joanne A. Labate ◽  
Larry D. Robertson ◽  
Susan R. Strickler ◽  
Lukas A. Mueller

The most diverse wild tomato species Solanum peruvianum sensu lato (s.l.) has been reclassified into four separate species: Solanum peruvianum sensu stricto (s.s.), Solanum corneliomuelleri, Solanum huaylasense, and Solanum arcanum. However, reproductive barriers among the species are incomplete and this can lead to discrepancies regarding genetic identity of germplasm. We used genotyping by sequencing (GBS) of S. peruvianum s.l., Solanum neorickii, and Solanum chmielewskii to develop tens of thousands of mapped single nucleotide polymorphisms (SNPs) to analyze genetic relationships within and among species. The data set was condensed to 14 043 SNPs with no missing data across 46 sampled plants. Origins of accessions were mapped using geographical information systems (GIS). Isolation by distance, pairwise genetic distances, and number of clusters were estimated using population genetics approaches. Isolation by distance was strongly supported, especially between interspecific pairs. Eriopersicon (S. peruvianum s.s., S. corneliomuelleri, S. huaylasense) and Arcanum (S. arcanum, S. neorickii, S. chmielewskii) species groups were genetically distinct, except for S. huaylasense which showed 50% membership proportions in each group. Solanum peruvianum and S. corneliomuelleri were not significantly differentiated from each other. Many thousands of SNP markers were identified that could potentially be used to distinguish pairs of species, including S. peruvianum versus S. corneliomuelleri, if they are verified on larger numbers of samples. Diagnostic markers will be valuable for delimiting morphologically similar and interfertile species in germplasm management. Approximately 12% of the SNPs rejected a genome-wide test of selective neutrality based on differentiation among species of S. peruvianum s.l. These are candidates for more comprehensive studies of microevolutionary processes within this species complex.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carlos A. Avila ◽  
Thiago G. Marconi ◽  
Zenaida Viloria ◽  
Julianna Kurpis ◽  
Sonia Y. Del Rio

Abstract The tomato-potato psyllid (TPP), Bactericera cockerelli, is a vector for the phloem-limited bacterium Candidatus Liberibacter solanacearum (Lso), the causative agent of economically important diseases including tomato vein-greening and potato zebra chip. Here, we screened 11 wild tomato relatives for TPP resistance as potential resources for tomato (Solanum lycopersicum) cultivar development. Six accessions with strong TPP resistance (survival <10%) were identified within S. habrochaites, S. pennelli, S. huaylasense, S. chmielewskii, S. corneliomulleri, and S. galapagense. Two S. pennelli and S. corneliomulleri accessions also showed resistance to Lso. We evaluated recombinant inbred lines (RILs) carrying resistance from S. habrochaites accession LA1777 in the S. lycopersicum background and identified major quantitative trait loci (QTLs) responsible for adult TPP mortality and fecundity in several RILs carrying insertions in different chromosomes, indicating the polygenic nature of these traits. Analysis of a major resistance QTL in RIL LA3952 on chromosome 8 revealed that the presence of Lso is required to increase adult TPP mortality. By contrast, the reduced TPP oviposition trait in LA3952 is independent of Lso. Therefore, resistance traits are available in wild-tomato species, although their complex inheritance and modes of action require further characterisation to optimise their utilisation for tomato improvement.


2018 ◽  
Vol 5 (4) ◽  
pp. 174
Author(s):  
Asma Akbar ◽  
Shaukat Hussain ◽  
Gul Shad Ali

Fusarium wilt caused by different Fusarium species is a devastating disease causes heavy loss to tomato plantation worldwide. In this study 13 tomato varieties were screened against F. equiseti to explore the resistance potential of the varieties against the disease. Out of 13 varieties only 2 varieties Roma and Hybrid showed resistance to the disease, while the other 69% were highly susceptible. Based on cluster analysis for genetic diversity it was reported that susceptible varieties are only 8% genetically different and share same genetic pool. We reported that the wild species of tomato Solanum pimpinellifolium (Sp- 2093) showed complete immunity and were remain unaffected having 25% genetic difference with other varieties tested. Thus wild tomato species may provide the source of resistance required to develop resistant variety against the emerging wilt pathogen F. equiseti. The data regarding virluence structure and resisatnt variety that is presented in this study will suport more focused efforts in the management of tomato wilt caused by Fusarium species and that resistant features of wild tomato variety Sp-2093, could be accumulated with other desirable characteristics of different germplasm in one cultivar, which will reduce the chances for new virulent species to evolve.


2013 ◽  
Vol 100 (10) ◽  
pp. 1991-1999 ◽  
Author(s):  
Hsien Ming Easlon ◽  
José Salvador Rubio Asensio ◽  
Dina A. St.Clair ◽  
Arnold J. Bloom

Sign in / Sign up

Export Citation Format

Share Document