scholarly journals First phylogenetic analysis of Malian SARS-CoV-2 sequences provide molecular insights into the genomic diversity of the Sahel region

Author(s):  
Bourema Kouriba ◽  
Angela Duerr ◽  
Alexandra Rehn ◽  
Abdoul Karim Sangare ◽  
Brehima Youssouf Traoure ◽  
...  

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occuring in the Wuhan region, China, in December 2019. From China the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on the 2nd of March 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequence data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening of 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates from which 21 whole genome sequences were generated. Our analysis shows that both, the early A (19B) and the fast evolving B (20A/C) clade, are present in Mali indicating multiple and independent introductions of the SARS-CoV-2 to the Sahel region.

Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1251
Author(s):  
Bourema Kouriba ◽  
Angela Dürr ◽  
Alexandra Rehn ◽  
Abdoul Karim Sangaré ◽  
Brehima Y. Traoré ◽  
...  

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on 2 March 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.


2019 ◽  
Author(s):  
Ronan M. Doyle ◽  
Denise M. O’Sullivan ◽  
Sean D. Aller ◽  
Sebastian Bruchmann ◽  
Taane Clark ◽  
...  

AbstractBackgroundAntimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a ‘one-stop’ test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data sequenced from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants and identify problem cases and factors that lead to discordant results.MethodsWe produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams (‘participants’) were provided these sequence data without any other contextual information. Each participant used their own pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime.ResultsIndividual participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment a different antibiotic would have been recommended for each isolate by at least one participant.ConclusionsWe found that participants produced discordant predictions from identical WGS data. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases and standardisation in the comparisons between genotype and resistance phenotypes will be fundamental before AST prediction using WGS can be successfully implemented in standard clinical microbiology laboratories.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shahid Y. Khan ◽  
Muhammad Ali ◽  
Mei-Chong W. Lee ◽  
Zhiwei Ma ◽  
Pooja Biswas ◽  
...  

Abstract Here we report whole genome sequencing of four individuals (H3, H4, H5, and H6) from a family of Pakistani descent. Whole genome sequencing yielded 1084.92, 894.73, 1068.62, and 1005.77 million mapped reads corresponding to 162.73, 134.21, 160.29, and 150.86 Gb sequence data and 52.49x, 43.29x, 51.70x, and 48.66x average coverage for H3, H4, H5, and H6, respectively. We identified 3,529,659, 3,478,495, 3,407,895, and 3,426,862 variants in the genomes of H3, H4, H5, and H6, respectively, including 1,668,024 variants common in the four genomes. Further, we identified 42,422, 39,824, 28,599, and 35,206 novel variants in the genomes of H3, H4, H5, and H6, respectively. A major fraction of the variants identified in the four genomes reside within the intergenic regions of the genome. Single nucleotide polymorphism (SNP) genotype based comparative analysis with ethnic populations of 1000 Genomes database linked the ancestry of all four genomes with the South Asian populations, which was further supported by mitochondria based haplogroup analysis. In conclusion, we report whole genome sequencing of four individuals of Pakistani descent.


Author(s):  
Hu Xu ◽  
Chao Li ◽  
Wansheng Li ◽  
Jing Zhao ◽  
Bangjun Gong ◽  
...  

NADC34-like PRRSV strains were first detected in China in 2017, with epidemic potential. In this study, the phylogenetic, epidemic, and recombinant properties of NADC34-like PRRSV in China were evaluated comprehensively. From 2020 to October 2021, 82 NADC34-like PRRSV isolates were obtained from 433 PRRSV-positive clinical samples. These strains accounted for 11.5% and 28.6% of positives in 2020 and 2021, respectively, and have spread to eight provinces. We selected 15 samples for whole-genome sequencing, revealing genome lengths of 15,009 to 15,113 nt. Phylogenetic analysis revealed that Chinese NADC34-like strains cluster with American sublineage 1.5 strains and do not form an independent branch. Recombination analysis revealed that six of fifteen complete genome sequences derived from recombination between NADC34-like and NADC30-like or HP-PRRSV; they all recombined with local strains in China, exhibiting a complex recombination pattern. Partial Nsp2 sequence alignment showed that nine of fifteen isolates have a continuous 100-aa deletion (similar to IA/2014/NADC34); other isolates have a 131-aa discontinuity deletion (similar to NADC30). Five of them also have additional amino acid deletions, all of which are reported for the first time here. In the last two years, NADC34-like PRRSV has become one of the main epidemic strains in some areas of China; it has changed significantly, its homology has decreased significantly, and it has undergone complex recombination with local Chinese strains. These results are of great significance for understanding the current epidemic situation of PRRSV in China.


2020 ◽  
Author(s):  
Zarina Mohd Zawawi ◽  
Jeyanthi Suppiah ◽  
Jeevanathan Kalyanasundram ◽  
Muhammad Afif Azizan ◽  
Shuhaila Mat-Sharani ◽  
...  

Abstract Background: Since December 2019, the outbreak of COVID-19 has raised a great public health concern globally. Here, we report the whole genome sequencing analysis of SARS-CoV-2 strains in Malaysia isolated from six patients diagnosed with COVID-19.Methods: The SARS-CoV-2 viral RNA extracted from clinical specimens and isolates were subjected to whole genome sequencing using NextSeq 500 platform. The sequencing data were assembled to full genome sequences using Megahit and phylogenetic tree was constructed using Mega X software.Results: Six full genome sequences of SARS-CoV-2 comprising of strains from 1st wave (25th January 2020) and 2nd wave (27th February 2020) infection were obtained. Downstream analysis demonstrated diversity among the Malaysian strains with several synonymous and non-synonymous mutations in four of the six cases, affecting the genes M, orf1ab, and S of the SARS-CoV-2 virus. The phylogenetic analysis revealed viral genome sequences of Malaysian SARS-CoV-2 strains clustered under the ancestral Type B.Conclusion: This study comprehended the SARS-CoV-2 virus evolution during its circulation in Malaysia. Continuous monitoring and analysis of the whole genome sequences of confirmed cases would be crucial to further understand the genetic evolution of the virus.


2019 ◽  
Vol 57 (6) ◽  
Author(s):  
R. C. Jones ◽  
L. G. Harris ◽  
S. Morgan ◽  
M. C. Ruddy ◽  
M. Perry ◽  
...  

ABSTRACT An inability to standardize the bioinformatic data produced by whole-genome sequencing (WGS) has been a barrier to its widespread use in tuberculosis phylogenetics. The aim of this study was to carry out a phylogenetic analysis of tuberculosis in Wales, United Kingdom, using Ridom SeqSphere software for core genome multilocus sequence typing (cgMLST) analysis of whole-genome sequencing data. The phylogenetics of tuberculosis in Wales have not previously been studied. Sixty-six Mycobacterium tuberculosis isolates (including 42 outbreak-associated isolates) from south Wales were sequenced using an Illumina platform. Isolates were assigned to principal genetic groups, single nucleotide polymorphism (SNP) cluster groups, lineages, and sublineages using SNP-calling protocols. WGS data were submitted to the Ridom SeqSphere software for cgMLST analysis and analyzed alongside 179 previously lineage-defined isolates. The data set was dominated by the Euro-American lineage, with the sublineage composition being dominated by T, X, and Haarlem family strains. The cgMLST analysis successfully assigned 58 isolates to major lineages, and the results were consistent with those obtained by traditional SNP mapping methods. In addition, the cgMLST scheme was used to resolve an outbreak of tuberculosis occurring in the region. This study supports the use of a cgMLST method for standardized phylogenetic assignment of tuberculosis isolates and for outbreak resolution and provides the first insight into Welsh tuberculosis phylogenetics, identifying the presence of the Haarlem sublineage commonly associated with virulent traits.


Author(s):  
Chris Adhiyanto ◽  
Laifa A. Hendarmin ◽  
Erike A. Suwarsono ◽  
Zeti Harriyati ◽  
Suryani ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the current pandemic. Viral genome sequencing has been widely applied during outbreaks to study the relatedness of this virus to other viruses, its transmission mode, pace, evolution and geographical spread, and also its adaptation to human hosts. To date, more than 90,000 SARS-CoV-2 genome sequences have been uploaded to the GISAID database. The availability of sequencing data along with clinical and geographical data may be useful for epidemiological investigations. In this study, we aimed to analyse the genetic background of SARS-CoV-2 from patients in Indonesia by whole genome sequencing. We examined nine samples from COVID-19 patients with RT-PCR cycle threshold (Ct) of less than 25 using ARTIC Network protocols for Oxford Nanopore’s Gridi On sequencer. The analytical methods were based on the ARTIC multiplex PCR sequencing protocol for COVID-19. In this study, we found that several genetic variants within the nine COVID-19 patient samples. We identified a mutation at position 614 P323L mutation in the ORF1ab gene often found in our severe patient samples. The number of SNPs and their location within the SARS-CoV-2 genome seems to vary. This diversity might be responsible for the virulence of the virus and its clinical manifestation.


Sign in / Sign up

Export Citation Format

Share Document