scholarly journals Homing Choices of Breast Cancer Cells Revealed by Tissue Specific Invasion and Extravasation Lab-on-a-chip Platforms

2020 ◽  
Author(s):  
Burcu Firatligil-Yildirir ◽  
Gizem Bati-Ayaz ◽  
Ismail Tahmaz ◽  
Muge Bilgen ◽  
Devrim Pesen-Okvur ◽  
...  

AbstractMetastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of novel platforms to predict metastatic potential and homing choices of cancer cells. Here, two novel Lab-on-a-chip (LOC) platforms, invasion/chemotaxis (IC-chip) and extravasation (EX-chip), are presented for the quantitative assessment of invasion and extravasation, towards specific tissues. On IC-chip, invasive MDA-MB-231, but not non-invasive MCF-7 breast cancer cells invaded lung and liver microenvironments. Lung-specific but not bone-specific MDA-MB-231 clones efficiently invaded lung microenvironment, stressing ability of IC-chip to demonstrate different in vivo metastatic behaviors. On EX-chip, MDA-MB-231 cells extravasated more into the lung microenvironment compared to the liver and breast highlighting the potency of the platform to mimic in vivo homing choices. Overall, this study presents IC-chip and EX-chip that can determine tissue-specific invasion and extravasation potentials of cancer cells providing the groundwork for novel diagnostic tools to predict metastasis risk.

2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e65906 ◽  
Author(s):  
Yuan-Hong Zhou ◽  
Sheng-Jun Liao ◽  
Dong Li ◽  
Jing Luo ◽  
Jing-Jing Wei ◽  
...  

2011 ◽  
Vol 18 (4) ◽  
pp. 413-428 ◽  
Author(s):  
Brandi B Knight ◽  
Gabriela M Oprea-Ilies ◽  
Arumugam Nagalingam ◽  
Lily Yang ◽  
Cynthia Cohen ◽  
...  

Obese breast cancer patients exhibit a higher risk for larger tumor burden and an increased likelyhood of metastasis. The molecular effects of obesity on carcinogenesis are mediated by the autocrine and paracrine effects of the adipocytokine leptin. Leptin participates in the tumor progression and metastasis of human breast. We show that leptin induces clonogenicity and increases the migration potential of breast cancer cells. We found that survivin expression is induced in response to leptin. In this study, we examine the role and leptin-mediated regulation of survivin. Leptin treatment leads to survivin upregulation, due in part to the activation of Notch1 and the release of a transcriptionally active Notch1 intracellular domain (NICD). Chromatin immunoprecipitation analysis shows that NICD gets recruited to the survivin promoter at the CSL (CBF1/RBP-Jk, Su(H), Lag-1) binding site in response to leptin treatment. Inhibition of Notch1 activity inhibits leptin-induced survivin upregulation. Leptin-induced transactivation of epidermal growth factor receptor (EGFR) is involved in leptin-mediated Notch1 and survivin upregulation, demonstrating a novel upstream role of leptin–EGFR–Notch1 axis. We further show that leptin-induced migration of breast cancer cells requires survivin, as overexpression of survivin further increases, whereas silencing survivin abrogates leptin-induced migration. Using a pharmacological approach to inhibit survivin, we show that 3-hydroxy-3-methylglutaryl-coenzyme-A-reductase inhibitors, such as lovastatin, can effectively inhibit leptin-induced survivin expression and migration. Importantly, leptin increased breast tumor growth in nude mice. These data show a novel role for survivin in leptin-induced migration and put forth pharmacological survivin inhibition as a potential novel therapeutic strategy. This conclusion is supported by in vivo data showing the overexpression of leptin and survivin in epithelial cells of high-grade ductal carcinomas in situ and in high-grade invasive carcinomas.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3543-3543 ◽  
Author(s):  
Jason Brown ◽  
Palak Shah ◽  
Josh Vo ◽  
Lanbo Xiao ◽  
Yashar Niknafs ◽  
...  

3543 Background: Non-invasive testing in plasma using RNA biomarkers has been limited by exoribonuclease-mediated degradation of RNA. Circular RNA (circRNA) are covalently closed RNA structures that resist this degradation due to their circular structure. Therefore circRNA are more stable than their linear counterparts. CircRNA are formed by alternative backsplicing of the 3’ end of a downstream exon to the 5’ end of an upstream exon. Here, we propose a novel method for non-invasive identification of circRNA and demonstrate circularized forms of several lineage and cancer specific targets for estrogen receptor-positive breast cancer. Methods: Capture RNA sequencing on cancer tissue was previously performed to determine the relative expression of potential circRNA isoforms in breast cancer patients. These isoforms as well as those predicted by intron length were screened using a quantitative PCR-based assay on ER-positive breast cancer cells. RNA extracted from breast cancer cells are exposed to ribonuclease R to demonstrate stability of circRNA. CircRNA derived from targets with known universal expression are used as positive controls as well as for analysis on plasma. Results: We identify the circRNA isoforms with highest expression for five genes, including ESR1, that are differentially expressed in ER-positive breast cancer compared to other cancers and normal breast tissue. We determine that the circRNA corresponding to all five targets is specifically expressed in breast cancer cell lines with at least 1000-fold higher expression than in non-ER positive breast cancer cell lines. We demonstrate that the highest expressing circRNA isoforms are resistant to degradation by ribonuclease R, whereas corresponding linear mRNA is susceptible. We also demonstrate the presence and stability of positive control circRNA in plasma from patients without cancer. Conclusions: CircRNA are promising biomarkers for early non-invasive detection of cancer due to their stability in plasma. This assay reliably detects ER-positive breast cancer specific circRNA, and exoribonuclease resistance has been validated. Application of this diagnostic assay to plasma from breast cancer patients is underway.


2019 ◽  
Author(s):  
Daniela Hühn ◽  
Pablo Martí-Rodrigo ◽  
Silvana Mouron ◽  
Catherine S. Hansel ◽  
Kirsten Tschapalda ◽  
...  

ABSTRACTEstrogen receptor (ER)-positive breast tumors are routinely treated with estrogen-depriving therapies. Despite their effectiveness, patients often progress into a more aggressive form of the disease. Through a chemical screen oriented to identify chemicals capable of inducing the expression of the immune-checkpoint ligand PD-L1, we found antiestrogens as hits. Subsequent validations confirmed that estrogen deprivation or ERα depletion induces PD-L1 expression in ER-positive breast cancer cells, both in vitro and in vivo. Likewise, PD-L1 expression is increased in metastasis arising from breast cancer patients receiving adjuvant hormonal therapy for their local disease. Transcriptome analyses indicate that estrogen deprivation triggers a broad immunosuppressive program, not restricted to PD-L1. Accordingly, estrogen deprived MCF7 cells are resistant to T-cell mediated cell killing, in a manner that can be reverted by estradiol. Our study reveals that while antiestrogen therapies effectively limit tumor growth in ER-positive breast cancers, they also trigger a transcriptional program that favors immune evasion.


2020 ◽  
Author(s):  
Darryl Lau ◽  
Harsh Wadhwa ◽  
Sweta Sudhir ◽  
Saket Jain ◽  
Ankush Chandra ◽  
...  

ABSTRACTMetastases cause 90% of human cancer deaths. The metastatic cascade involves local invasion, intravasation, extravasation, metastatic site colonization, and proliferation. While individual mediators of these processes have been investigated, interactions between these mediators remain less well defined. We previously identified a structural complex between receptor tyrosine kinase c-Met and β1 integrin in metastases. Using novel cell culture and in vivo assays, we found that c-Met/β1 complex induction promotes breast cancer intravasation and adhesion to the vessel wall, but does not increase extravasation. These effects may be driven by the ability of the c-Met/β1 complex to increase mesenchymal and stem cell characteristics. Multiplex transcriptomic analysis revealed upregulated Wnt and hedgehog pathways after c-Met/β1 complex induction. A β1 integrin point mutation that prevented binding to c-Met reduced intravasation. OS2966, a therapeutic antibody disrupting c-Met/β1 binding, decreased invasion and mesenchymal gene expression and morphology of breast cancer cells. Bone-seeking breast cancer cells exhibited higher c-Met/β1 complex levels than parental controls and preferentially adhere to tissue-specific matrix. Patient bone metastases demonstrated higher c-Met/β1 levels than brain metastases. Thus, the c-Met/β1 complex drives breast cancer cell intravasation and preferential affinity for bone tissue-specific matrix. Pharmacological targeting of the complex may prevent metastases, particularly osseous metastases.


Author(s):  
Lansheng Zhang ◽  
Xia Zheng ◽  
Anqi Shen ◽  
Daojin Hua ◽  
Panrong Zhu ◽  
...  

Chemoresistance remains a major obstacle for improving the clinical outcome of patients with breast cancer. Recently, long noncoding RNAs (lncRNAs) have been implicated in breast cancer chemoresistance. However, the function and underlying mechanism are still largely unknown. Using lncRNA microarray, we identified 122 upregulated and 475 downregulated lncRNAs that might be related to the breast cancer chemoresistance. Among them, RP11-70C1.3 was one of the most highly expressed lncRNAs. In breast cancer patients, high RP11-70C1.3 expression predicted poor prognosis. Knockdown of RP11-70C1.3 inhibited the multidrug resistance of breast cancer cells in vitro and in vivo. Further investigations revealed that RP11-70C1.3 functioned as a competing endogenous RNA (ceRNA) for miR-6736-3p to increase NRP-1 expression. Notably, the rescue experiments showed that both miR-6736-3p inhibitor and NRP-1 overexpression could partly reverse the suppressive influence of RP11-70C1.3 knockdown on breast cancer chemoresistance. In conclusion, our study indicated that lncRNA RP11-70C1.3 regulated NRP-1 expression by sponging miR-6736-3p to confer chemoresistance of breast cancer cells. RP11-70C1.3 might be a potential therapeutic target in enhancing the clinical efficacy of chemotherapy in breast cancer.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Bin Sheng ◽  
Zichao Wei ◽  
Xiaowei Wu ◽  
Yi Li ◽  
Zhihua Liu

AbstractDeubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document