scholarly journals Prior cocaine exposure increases firing to immediate reward while attenuating cue and context signals related to reward value in anterior insula

2020 ◽  
Author(s):  
Heather J. Pribut ◽  
Daniela Vázquez ◽  
Adam T. Brockett ◽  
Alice D. Wei ◽  
Stephen S. Tennyson ◽  
...  

ABSTRACTThe insula contributes to behavioral control and is disrupted by substance abuse, yet we know little about the neural signals underlying these functions or how they are disrupted after chronic drug self-administration. Here, rats self-administered either cocaine (experimental group) or sucrose (control) for twelve consecutive days. After a one-month withdrawal period, we recorded from anterior insula while rats performed a previously learned reward-guided decision-making task. Cocaine-exposed rats were more sensitive to value manipulations and were faster to respond. These behavioral changes were accompanied by elevated counts of neurons in the insula that increased firing to reward. These neurons also fired more strongly at the start of long delay trials-when a more immediate reward would be expected, and fired less strongly in anticipation of the actual delivery of delayed rewards. Although reward-related firing to immediate reward was enhanced after cocaine self-administration, reward-predicting cue and context signals were attenuated.Significance StatementThe insula plays a clear role in drug-addiction and drug-induced impairments of decision-making, yet there is little understanding of its underlying neural signals. We found that chronic cocaine self-administration reduces cue and context-encoding in insula, while enhancing signals related to immediate reward. These changes in neural activity likely contribute to impaired decision-making and impulsivity observed after drug use.

2019 ◽  
Vol 45 (5) ◽  
pp. 833-841 ◽  
Author(s):  
Daniela Vázquez ◽  
Heather J. Pribut ◽  
Amanda C. Burton ◽  
Stephen S. Tennyson ◽  
Matthew R. Roesch

AbstractAlthough maladaptive decision-making is a defining feature of drug abuse and addiction, we have yet to ascertain how cocaine self-administration disrupts neural signals in anterior cingulate cortex (ACC), a brain region thought to contribute to attentional control. To address this issue, rats were trained on a reward-guided decision-making task; reward value was manipulated by independently varying the size of or the delay to reward over several trial blocks. Subsequently, rats self-administered either a cocaine (experimental group) or sucrose (control) during 12 consecutive days, after which they underwent a 1-month withdrawal period. Upon completion of this period, rats performed the previously learned reward-guided decision-making task while we recorded from single neurons in ACC. We demonstrate that prior cocaine self-administration attenuates attention and attention-related ACC signals in an intake-dependent manner, and that changes in attention are decoupled from ACC firing. These effects likely contribute to the impaired decision-making—typified by chronic substance abuse and relapse—observed after drug use.


2012 ◽  
Vol 24 (1) ◽  
pp. 196-211 ◽  
Author(s):  
Yanfang Zuo ◽  
Xinsheng Wang ◽  
Cailian Cui ◽  
Fei Luo ◽  
Peng Yu ◽  
...  

Addicts and drug-experienced animals have decision-making deficits in delayed reinforcement choice task, in which they prefer small immediate rewards over large delayed rewards. Here, we show evidence that this deficit is accompanied by changed coding of delay length in the basolateral amygdala (BLA). A subset of neurons in BLA demonstrated delay-dependent anticipatory activity (either increase or decrease as a function of delay to reward) in naive rats. After 30 days of withdrawal from chronic cocaine treatment (30 mg/kg/day for 10 days ip), the proportion of delay-dependent anticipatory neurons reduced, whereas delay-dependent activity in response to elapsed delay after reward delivery increased, both in the proportion of delay-dependent neurons and in the extent of delay dependence. Cocaine exposure increased, instead of decreased, BLA neuronal expectation for different reward magnitudes. These results indicate that BLA is critical for representing and maintaining the information of delayed reward before its delivery, and cocaine exposure may affect decision-making by impairing perception of delay instead of the ability to assess the differences in reward size.


Author(s):  
Adélie Salin ◽  
Virginie Lardeux ◽  
Marcello Solinas ◽  
Pauline Belujon

Abstract The chronic relapsing nature of cocaine addiction suggests that chronic cocaine exposure produces persistent neuroadaptations that may be temporally and regionally dynamic in brain areas such as the dopaminergic (DA) system. We have previously shown altered metabolism of DA-target structures, the ventral and dorsal striatum, between early and late abstinence. However, specific changes within the midbrain DA system were not investigated. Here, we investigated potential time and region-specific changes of activity in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) in rats that had extended or limited access to cocaine and later underwent a period of abstinence. We found that DA activity is decreased only in the VTA in rats with extended access to cocaine, with no changes in SNc DA activity. These changes in VTA DA activity may participate in the negative emotional state and in the incubation of drug seeking that occur during abstinence from cocaine.


Author(s):  
Wuyi Wang ◽  
Simon Zhornitsky ◽  
Sheng Zhang ◽  
Chiang-shan R. Li

AbstractPreclinical studies have implicated noradrenergic (NA) dysfunction in cocaine addiction. In particular, the NA system plays a central role in motivated behavior and may partake in the regulation of craving and drug use. Yet, human studies of the NA system are scarce, likely hampered by the difficulty in precisely localizing the locus coeruleus (LC). Here, we used neuromelanin imaging to localize the LC and quantified LC neuromelanin signal (NMS) intensity in 44 current cocaine users (CU; 37 men) and 59 nondrug users (NU; 44 men). We also employed fMRI to investigate cue-induced regional responses and LC functional connectivities, as quantified by generalized psychophysiological interaction (gPPI), in CU. Imaging data were processed by published routines and the findings were evaluated with a corrected threshold. We examined how these neural measures were associated with chronic cocaine craving, as assessed by the Cocaine Craving Questionnaire (CCQ). Compared to NU, CU demonstrated higher LC NMS for all probabilistic thresholds defined of 50–90% of the peak. In contrast, NMS of the ventral tegmental area/substantia nigra (VTA/SN) did not show significant group differences. Drug as compared to neutral cues elicited higher activations of many cortical and subcortical regions, none of which were significantly correlated with CCQ score. Drug vs. neutral cues also elicited “deactivation” of bilateral parahippocampal gyri (PHG) and PHG gPPI with a wide array of cortical and subcortical regions, including the ventral striatum and, with small volume correction, the LC. Less deactivation of the PHG (r = 0.40, p = 0.008) and higher PHG-LC gPPI (r = 0.44, p = 0.003) were positively correlated with the CCQ score. In contrast, PHG-VTA/SN connectivity did not correlate with the CCQ score. Together, chronic cocaine exposure may induce higher NMS intensity, suggesting neurotoxic effects on the LC. The correlation of cue-elicited PHG LC connectivity with CCQ score suggests a noradrenergic correlate of chronic cocaine craving. Potentially compensating for memory functions as in neurodegenerative conditions, cue-elicited PHG LC circuit connectivity plays an ill-adaptive role in supporting cocaine craving.


Author(s):  
Rianne R. Campbell ◽  
Siwei Chen ◽  
Joy H. Beardwood ◽  
Alberto J. López ◽  
Lilyana V. Pham ◽  
...  

AbstractDuring the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.


2021 ◽  
Vol 155 ◽  
pp. 107793
Author(s):  
Chad C. Williams ◽  
Thomas D. Ferguson ◽  
Cameron D. Hassall ◽  
Bruce Wright ◽  
Olave E. Krigolson

RISORSA UOMO ◽  
2013 ◽  
pp. 455-470
Author(s):  
Annamaria Di Fabio ◽  
Letizia Palazzeschi ◽  
Francesca Camilli ◽  
Antonio Raschi

The present work aims to evaluate the effectiveness of a competence assessment intervention for professional enterprising effected with entrepreneurs of the agriculture and textile craft sectors and carried out within the project Guidance Paths (Percorsi di orientamento), a three-year project supported by the Italian Ministry of Labour and the Social Policy. The study used an experimental group (55 participants) that received a competence assessment intervention and a control group (37 participants). The results showed a decrease in career decision-making difficulties and an increase in career decision- making self-efficacy in the experimental group suggesting the effectiveness of competence assessment for entrepreneurship of women.


Sign in / Sign up

Export Citation Format

Share Document