scholarly journals On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo

2020 ◽  
Author(s):  
Rabier Charles-Elie ◽  
Berry Vincent ◽  
Glaszmann Jean-Christophe ◽  
Pardi Fabio ◽  
Scornavacca Celine

AbstractFor various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization, introgression and recombination. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method [1] inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software.Recently, the MCMCBiMarkers method [2] also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using extensive simulations, we compare performances of SnappNet and MCMCBiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMCBiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMCBiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is compatible with simpler schemes proposed so far and provides additional understanding of rice evolution.Author summaryNowadays, to make the best use of the vast amount of genomic data at our disposal, there is a real need for methods able to model complex biological mechanisms such as hybridization and introgression. Understanding such mechanisms can help geneticists to elaborate strategies in crop improvement that may help reducing poverty and dealing with climate change. However, reconstructing such evolution scenarios is challenging. Indeed, the inference of phylogenetic networks, which explicitly model reticulation events such as hybridization and introgression, requires high computational resources. Then, on large data sets, biologists generally deduce reticulation events indirectly using species tree inference tools.In this context, we present a new Bayesian method, called SnappNet, dedicated to phylogenetic network inference. Our method is competitive in terms of execution speed with respect to its competitors. This speed gain enables us to consider more complex evolution scenarios during Bayesian analyses. When applied to rice genomic data, SnappNet suggested a new evolution scenario, compatible with the existing ones: it posits cAus as the result of an early combination between the Indica and Japonica lineages, followed by a later combination between the cAus and Japonica lineages to derive cBasmati. This accounts for the well-documented wide hybrid compatibility of cAus.

2021 ◽  
Vol 17 (9) ◽  
pp. e1008380
Author(s):  
Charles-Elie Rabier ◽  
Vincent Berry ◽  
Marnus Stoltz ◽  
João D. Santos ◽  
Wensheng Wang ◽  
...  

For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.


2018 ◽  
Author(s):  
Jiafan Zhu ◽  
Luay Nakhleh

AbstractMotivationPhylogenetic networks represent reticulate evolutionary histories. Statistical methods for their inference under the multispecies coalescent have recently been developed. A particularly powerful approach uses data that consist of bi-allelic markers (e.g., single nucleotide polymorphism data) and allows for exact likelihood computations of phylogenetic networks while numerically integrating over all possible gene trees per marker. While the approach has good accuracy in terms of estimating the network and its parameters, likelihood computations remain a major computational bottleneck and limit the method’s applicability.ResultsIn this paper, we first demonstrate why likelihood computations of networks take orders of magnitude more time when compared to trees. We then propose an approach for inference of phylo-genetic networks based on pseudo-likelihood using bi-allelic markers. We demonstrate the scalability and accuracy of phylogenetic network inference via pseudo-likelihood computations on simulated data. Furthermore, we demonstrate aspects of robustness of the method to violations in the underlying assumptions of the employed statistical model. Finally, we demonstrate the application of the method to biological data. The proposed method allows for analyzing larger data sets in terms of the numbers of taxa and reticulation events. While pseudo-likelihood had been proposed before for data consisting of gene trees, the work here uses sequence data directly, offering several advantages as we discuss.AvailabilityThe methods have been implemented in PhyloNet (http://bioinfocs.rice.edu/phylonet)[email protected], [email protected]


2020 ◽  
Vol 69 (5) ◽  
pp. 848-862 ◽  
Author(s):  
Melisa Olave ◽  
Axel Meyer

Abstract The Midas cichlids of the Amphilophus citrinellus spp. species complex from Nicaragua (13 species) are an extraordinary example of adaptive and rapid radiation ($<$24,000 years old). These cichlids are a very challenging group to infer its evolutionary history in phylogenetic analyses, due to the apparent prevalence of incomplete lineage sorting (ILS), as well as past and current gene flow. Assuming solely a vertical transfer of genetic material from an ancestral lineage to new lineages is not appropriate in many cases of genes transferred horizontally in nature. Recently developed methods to infer phylogenetic networks under such circumstances might be able to circumvent these problems. These models accommodate not just ILS, but also gene flow, under the multispecies network coalescent (MSNC) model, processes that are at work in young, hybridizing, and/or rapidly diversifying lineages. There are currently only a few programs available that implement MSNC for estimating phylogenetic networks. Here, we present a novel way to incorporate single nucleotide polymorphism (SNP) data into the currently available PhyloNetworks program. Based on simulations, we demonstrate that SNPs can provide enough power to recover the true phylogenetic network. We also show that it can accurately infer the true network more often than other similar SNP-based programs (PhyloNet and HyDe). Moreover, our approach results in a faster algorithm compared to the original pipeline in PhyloNetworks, without losing power. We also applied our new approach to infer the phylogenetic network of Midas cichlid radiation. We implemented the most comprehensive genomic data set to date (RADseq data set of 679 individuals and $>$37K SNPs from 19 ingroup lineages) and present estimated phylogenetic networks for this extremely young and fast-evolving radiation of cichlid fish. We demonstrate that the MSNC is more appropriate than the multispecies coalescent alone for the analysis of this rapid radiation. [Genomics; multispecies network coalescent; phylogenetic networks; phylogenomics; RADseq; SNPs.]


Author(s):  
John A Rhodes ◽  
Hector Baños ◽  
Jonathan D Mitchell ◽  
Elizabeth S Allman

Abstract Summary MSCquartets is an R package for species tree hypothesis testing, inference of species trees, and inference of species networks under the Multispecies Coalescent model of incomplete lineage sorting and its network analog. Input for these analyses are collections of metric or topological locus trees which are then summarized by the quartets displayed on them. Results of hypothesis tests at user-supplied levels are displayed in a simplex plot by color-coded points. The package implements the QDC and WQDC algorithms for topological and metric species tree inference, and the NANUQ algorithm for level-1 topological species network inference, all of which give statistically consistent estimators under the model. Availability MSCquartets is available through the Comprehensive R Archive Network: https://CRAN.R-project.org/package=MSCquartets. Supplementary information Supplementary materials, including example data and analyses, are incorporated into the package.


Author(s):  
Diego F Morales-Briones ◽  
Gudrun Kadereit ◽  
Delphine T Tefarikis ◽  
Michael J Moore ◽  
Stephen A Smith ◽  
...  

Abstract Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]


Author(s):  
Ruoyi Cai ◽  
Cécile Ané

Abstract Motivation With growing genome-wide molecular datasets from next-generation sequencing, phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks include events like hybridization, gene flow or horizontal gene transfer explicitly. However, the most accurate network inference methods are computationally heavy. Methods that scale to larger datasets do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not applicable to decide how many past hybridization events best fit the data. We propose here a goodness-of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns expected under the multi-species coalescent model on a candidate phylogenetic network. Results We identified weaknesses in the previously proposed TICR test, and proposed corrections. The performance of our new test was validated by simulations on real-world phylogenetic networks. Our test provides one of the first rigorous tools for model selection, to select the adequate network complexity for the data at hand. The test can also work for identifying poorly inferred areas on a network. Availability and implementation Software for the goodness-of-fit test is available as a Julia package at https://github.com/cecileane/QuartetNetworkGoodnessFit.jl. Supplementary information Supplementary data are available at Bioinformatics online.


2009 ◽  
Vol 07 (04) ◽  
pp. 625-644 ◽  
Author(s):  
SAGI SNIR ◽  
TAMIR TULLER

Horizontal gene transfer (HGT) is the event of transferring genetic material from one lineage in the evolutionary tree to a different lineage. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Although the prevailing assumption is of complete HGT, cases of partial HGT (which are also named chimeric HGT) where only part of a gene is horizontally transferred, have also been reported, albeit less frequently. In this work we suggest a new probabilistic model, the NET-HMM, for analyzing and modeling phylogenetic networks. This new model captures the biologically realistic assumption that neighboring sites of DNA or amino acid sequences are not independent, which increases the accuracy of the inference. The model describes the phylogenetic network as a Hidden Markov Model (HMM), where each hidden state is related to one of the network's trees. One of the advantages of the NET-HMM is its ability to infer partial HGT as well as complete HGT. We describe the properties of the NET-HMM, devise efficient algorithms for solving a set of problems related to it, and implement them in software. We also provide a novel complementary significance test for evaluating the fitness of a model (NET-HMM) to a given dataset. Using NET-HMM, we are able to answer interesting biological questions, such as inferring the length of partial HGT's and the affected nucleotides in the genomic sequences, as well as inferring the exact location of HGT events along the tree branches. These advantages are demonstrated through the analysis of synthetical inputs and three different biological inputs.


2019 ◽  
Author(s):  
Jiafan Zhu ◽  
Xinhao Liu ◽  
Huw A. Ogilvie ◽  
Luay K. Nakhleh

AbstractReticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic networks while also accounting for other processes, such as incomplete lineage sorting (ILS). However, these methods can only handle a small number of loci from a handful of genomes.In this paper, we introduce a novel two-step method for scalable inference of phylogenetic networks from the sequence alignments of multiple, unlinked loci. The method infers networks on subproblems and then merges them into a network on the full set of taxa. To reduce the number of trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of subsets, and implement a simple heuristic to solve it. We studied their performance, in terms of both running time and accuracy, on simulated as well as on biological data sets. The two-step method accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The results are a significant and promising step towards accurate, large-scale phylogenetic network inference.We implemented the algorithms in the publicly available software package PhyloNet (https://bioinfocs.rice.edu/PhyloNet)[email protected]


2019 ◽  
Author(s):  
Zhen Cao ◽  
Xinhao Liu ◽  
Huw A. Ogilvie ◽  
Zhi Yan ◽  
Luay Nakhleh

AbstractPhylogenetic networks extend trees to enable simultaneous modeling of both vertical and horizontal evolutionary processes. PhyloNet is a software package that has been under constant development for over 10 years and includes a wide array of functionalities for inferring and analyzing phylogenetic networks. These functionalities differ in terms of the input data they require, the criteria and models they employ, and the types of information they allow to infer about the networks beyond their topologies. Furthermore, PhyloNet includes functionalities for simulating synthetic data on phylogenetic networks, quantifying the topological differences between phylogenetic networks, and evaluating evolutionary hypotheses given in the form of phylogenetic networks.In this paper, we use a simulated data set to illustrate the use of several of PhyloNet’s functionalities and make recommendations on how to analyze data sets and interpret the results when using these functionalities. All inference methods that we illustrate are incomplete lineage sorting (ILS) aware; that is, they account for the potential of ILS in the data while inferring the phylogenetic network. While the models do not include gene duplication and loss, we discuss how the methods can be used to analyze data in the presence of polyploidy.The concept of species is irrelevant for the computational analyses enabled by PhyloNet in that species-individuals mappings are user-defined. Consequently, none of the functionalities in PhyloNet deals with the task of species delimitation. In this sense, the data being analyzed could come from different individuals within a single species, in which case population structure along with potential gene flow is inferred (assuming the data has sufficient signal), or from different individuals sampled from different species, in which case the species phylogeny is being inferred.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rosanne Wallin ◽  
Leo van Iersel ◽  
Steven Kelk ◽  
Leen Stougie

Abstract Background Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or multiple phylogenetic trees as input data. Coronaviruses are known to recombine frequently, but rooted phylogenetic networks have not yet been used extensively to describe their evolutionary history. Here, we created a workflow to compare the evolutionary history of SARS-CoV-2 with other SARS-like viruses using several rooted phylogenetic network inference algorithms. This workflow includes filtering noise from sets of phylogenetic trees by contracting edges based on branch length and bootstrap support, followed by resolution of multifurcations. We explored the running times of the network inference algorithms, the impact of filtering on the properties of the produced networks, and attempted to derive biological insights regarding the evolution of SARS-CoV-2 from them. Results The network inference algorithms are capable of constructing rooted phylogenetic networks for coronavirus data, although running-time limitations require restricting such datasets to a relatively small number of taxa. Filtering generally reduces the number of reticulations in the produced networks and increases their temporal consistency. Taxon bat-SL-CoVZC45 emerges as a major and structural source of discordance in the dataset. The tested algorithms often indicate that SARS-CoV-2/RaTG13 is a tree-like clade, with possibly some reticulate activity further back in their history. A smaller number of constructed networks posit SARS-CoV-2 as a possible recombinant, although this might be a methodological artefact arising from the interaction of bat-SL-CoVZC45 discordance and the optimization criteria used. Conclusion Our results demonstrate that as part of a wider workflow and with careful attention paid to running time, rooted phylogenetic network algorithms are capable of producing plausible networks from coronavirus data. These networks partly corroborate existing theories about SARS-CoV-2, and partly produce new avenues for exploration regarding the location and significance of reticulate activity within the wider group of SARS-like viruses. Our workflow may serve as a model for pipelines in which phylogenetic network algorithms can be used to analyse different datasets and test different hypotheses.


Sign in / Sign up

Export Citation Format

Share Document