scholarly journals Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics

Author(s):  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Wei Jiang ◽  
Yixuan Ye ◽  
Qiongshi Lu ◽  
...  

AbstractGenetic correlation is the correlation of additive genetic effects on two phenotypes. It is an informative metric to quantify the overall genetic similarity between complex traits, which provides insights into their polygenic genetic architecture. Several methods have been proposed to estimate genetic correlations based on data collected from genome-wide association studies (GWAS). Due to the easy access of GWAS summary statistics and computational efficiency, methods only requiring GWAS summary statistics as input have become more popular than methods utilizing individual-level genotype data. Here, we present a benchmark study for different summary-statistics-based genetic correlation estimation methods through simulation and real data applications. We focus on two major technical challenges in estimating genetic correlation: marker dependency caused by linkage disequilibrium (LD) and sample overlap between different studies. To assess the performance of different methods in the presence of these two challenges, we first conducted comprehensive simulations with diverse LD patterns and sample overlaps. Then we applied these methods to real GWAS summary statistics for a wide spectrum of complex traits. Based on these experiments, we conclude that methods relying on accurate LD estimation are less robust in real data applications compared to other methods due to the imprecision of LD obtained from reference panels. Our findings offer a guidance on how to appropriately choose the method for genetic correlation estimation in post-GWAS analysis in interpretation.

2018 ◽  
Author(s):  
Omer Weissbrod ◽  
Jonathan Flint ◽  
Saharon Rosset

AbstractMethods that estimate heritability and genetic correlations from genome-wide association studies have proven to be powerful tools for investigating the genetic architecture of common diseases and exposing unexpected relationships between disorders. Many relevant studies employ a case-control design, yet most methods are primarily geared towards analyzing quantitative traits. Here we investigate the validity of three common methods for estimating genetic heritability and genetic correlation. We find that the Phenotype-Correlation-Genotype-Correlation (PCGC) approach is the only method that can estimate both quantities accurately in the presence of important non-genetic risk factors, such as age and sex. We extend PCGC to work with summary statistics that take the case-control sampling into account, and demonstrate that our new method, PCGC-s, accurately estimates both heritability and genetic correlations and can be applied to large data sets without requiring individual-level genotypic or phenotypic information. Finally, we use PCGC-S to estimate the genetic correlation between schizophrenia and bipolar disorder, and demonstrate that previous estimates are biased due to incorrect handling of sex as a strong risk factor. PCGC-s is available at https://github.com/omerwe/PCGCs.


Author(s):  
Yiliang Zhang ◽  
Qiongshi Lu ◽  
Yixuan Ye ◽  
Kunling Huang ◽  
Wei Liu ◽  
...  

AbstractLocal genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions, which could shed unique light on etiologic sharing and provide additional mechanistic insights into the genetic basis of complex traits compared to global genetic correlation. However, accurate estimation of local genetic correlation remains challenging, in part due to extensive linkage disequilibrium in local genomic regions and pervasive sample overlap across studies. We introduce SUPERGNOVA, a unified framework to estimate both global and local genetic correlations using summary statistics from genome-wide association studies. Through extensive simulations and analyses of 30 complex traits, we demonstrate that SUPERGNOVA substantially outperforms existing methods and identifies 150 trait pairs with significant local genetic correlations. In particular, we show that the positive, consistently-identified, yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically-distinct genetic signatures with bidirectional local genetic correlations. We believe that statistically-rigorous local genetic correlation analysis could accelerate progress in complex trait genetics research.


2021 ◽  
Author(s):  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Yixuan Ye ◽  
Wei Jiang ◽  
Qiongshi Lu ◽  
...  

AbstractWith the increasing accessibility of individual-level data from genome wide association studies, it is now common for researchers to have individual-level data of some traits in one specific population. For some traits, we can only access public released summary-level data due to privacy and safety concerns. The current methods to estimate genetic correlation can only be applied when the input data type of the two traits of interest is either both individual-level or both summary-level. When researchers have access to individual-level data for one trait and summary-level data for the other, they have to transform the individual-level data to summary-level data first and then apply summary data-based methods to estimate the genetic correlation. This procedure is computationally and statistically inefficient and introduces information loss. We introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and summary data), a method that can estimate within-population or transethnic genetic correlation based on individual-level data for one trait and summary-level data for another trait. Through extensive simulations and analyses of real data on within-population and transethnic genetic correlation estimation, we show that GENJI produces more reliable and efficient estimation than summary data-based methods. Besides, when individual-level data are available for both traits, GENJI can achieve comparable performance than individual-level data-based methods. Downstream applications of genetic correlation can benefit from more accurate estimates. In particular, we show that more accurate genetic correlation estimation facilitates the predictability of cross-population polygenic risk scores.


Author(s):  
Xiaofeng Zhu ◽  
Xiaoyin Li ◽  
Rong Xu ◽  
Tao Wang

Abstract Motivation The overall association evidence of a genetic variant with multiple traits can be evaluated by cross-phenotype association analysis using summary statistics from genome-wide association studies. Further dissecting the association pathways from a variant to multiple traits is important to understand the biological causal relationships among complex traits. Results Here, we introduce a flexible and computationally efficient Iterative Mendelian Randomization and Pleiotropy (IMRP) approach to simultaneously search for horizontal pleiotropic variants and estimate causal effect. Extensive simulations and real data applications suggest that IMRP has similar or better performance than existing Mendelian Randomization methods for both causal effect estimation and pleiotropic variant detection. The developed pleiotropy test is further extended to detect colocalization for multiple variants at a locus. IMRP will greatly facilitate our understanding of causal relationships underlying complex traits, in particular, when a large number of genetic instrumental variables are used for evaluating multiple traits. Availability and implementation The software IMRP is available at https://github.com/XiaofengZhuCase/IMRP. The simulation codes can be downloaded at http://hal.case.edu/∼xxz10/zhu-web/ under the link: MR Simulations software. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 118 (25) ◽  
pp. e2023184118
Author(s):  
Yuchang Wu ◽  
Xiaoyuan Zhong ◽  
Yunong Lin ◽  
Zijie Zhao ◽  
Jiawen Chen ◽  
...  

Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic, and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower body mass index, less-active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. A polygenic transmission disequilibrium test showed a significant overtransmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiliang Zhang ◽  
Qiongshi Lu ◽  
Yixuan Ye ◽  
Kunling Huang ◽  
Wei Liu ◽  
...  

AbstractLocal genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA, a statistical framework to estimate local genetic correlations using summary statistics from genome-wide association studies. We demonstrate that SUPERGNOVA outperforms existing methods through simulations and analyses of 30 complex traits. In particular, we show that the positive yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically distinct genetic signatures with bidirectional local genetic correlations.


2020 ◽  
Author(s):  
Konstantin Senkevich ◽  
Sara Bandres-Ciga ◽  
Eric Yu ◽  
Upekha E. Liyanage ◽  
Alastair J Noyce ◽  
...  

AbstractBackground and objectivesMost cancers appear with reduced frequency in Parkinson’s disease (PD), but the prevalence of melanoma and brain cancers are often reported to be increased. Shared genetic architecture and causal relationships to explain these associations have not been fully explored.MethodsLinkage disequilibrium score regression (LDSC) was applied for five cancer studies with available genome-wide association studies (GWAS) summary statistics to examine genetic correlations with PD. Additionally, we used GWAS summary statistics of 15 different types of cancers as exposures and two-sample Mendelian randomization to study the causal relationship with PD (outcome).ResultsLDSC analysis revealed a potential genetic correlation between PD and melanoma, breast cancer and prostate cancer. There was no evidence to support a causal relationship between the studied cancers and PD.ConclusionsOur results suggest shared genetic architecture between PD and melanoma, breast, and prostate cancers, but no obvious causal relationship between cancers and PD.


Author(s):  
Yuchang Wu ◽  
Xiaoyuan Zhong ◽  
Yunong Lin ◽  
Zijie Zhao ◽  
Jiawen Chen ◽  
...  

AbstractMarginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a novel statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower BMI, less active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. Polygenic transmission disequilibrium test showed a significant over-transmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


2021 ◽  
Author(s):  
Hongyu Zhao ◽  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Yixuan Ye ◽  
Wei Jiang ◽  
...  

Abstract With the increasing accessibility of individual-level data from genome wide association studies, it is now common for researchers to have individual-level data of some traits in one specific population. For some traits, we can only access public released summary-level data due to privacy and safety concerns. The current methods to estimate genetic correlation can only be applied when the input data type of the two traits of interest is either both individual-level or both summary-level. When researchers have access to individual-level data for one trait and summary-level data for the other, they have to transform the individual-level data to summary-level data first and then apply summary data-based methods to estimate the genetic correlation. This procedure is computationally and statistically inefficient and introduces information loss. We introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and summary data), a method that can estimate within-population or transethnic genetic correlation based on individual-level data for one trait and summary-level data for another trait. Through extensive simulations and analyses of real data on within-population and transethnic genetic correlation estimation, we show that GENJI produces more reliable and efficient estimation than summary data-based methods. Besides, when individual-level data are available for both traits, GENJI can achieve comparable performance than individual-level data-based methods. Downstream applications of genetic correlation can benefit from more accurate estimates. In particular, we show that more accurate genetic correlation estimation facilitates the predictability of cross-population polygenic risk scores.


Sign in / Sign up

Export Citation Format

Share Document