scholarly journals SARS-CoV-2 S protein ACE2 interaction reveals novel allosteric targets

2020 ◽  
Author(s):  
Palur Raghuvamsi ◽  
Nikhil Tulsian ◽  
Firdaus Samsudin ◽  
Xinlei Qian ◽  
Kiren Purushotorman ◽  
...  

AbstractThe Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells through surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, we have mapped the S:ACE2 interface and uncovered long-range allosteric propagation of ACE2 binding to sites critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~ 130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a mechanistic basis for S:ACE2 complex formation, critical for proteolytic processing and viral-host membrane fusion and highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as allosterically exposed cryptic hotspots for potential therapeutic development.One Sentence SummarySARS-CoV-2 spike protein binding to receptor ACE2 allosterically enhances furin proteolysis at distal S1/S2 cleavage sites

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Palur V Raghuvamsi ◽  
Nikhil Kumar Tulsian ◽  
Firdaus Samsudin ◽  
Xinlei Qian ◽  
Kiren Purushotorman ◽  
...  

The Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Our findings highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as alternate allosteric hotspot targets for potential therapeutic development.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2622
Author(s):  
Romina Oliva ◽  
Abdul Rajjak Shaikh ◽  
Andrea Petta ◽  
Anna Vangone ◽  
Luigi Cavallo

The crown of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constituted by its spike (S) glycoprotein. S protein mediates the SARS-CoV-2 entry into the host cells. The “fusion core” of the heptad repeat 1 (HR1) on S plays a crucial role in the virus infectivity, as it is part of a key membrane fusion architecture. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On 15 February 2021, from the SARS-CoV-2 genomic sequences in the GISAID resource, we collected 415,673 complete S protein sequences and identified all the mutations occurring in the HR1 fusion core. This is a 21-residue segment, which, in the post-fusion conformation of the protein, gives many strong interactions with the heptad repeat 2, bringing viral and cellular membranes in proximity for fusion. We investigated the frequency and structural effect of novel mutations accumulated over time in such a crucial region for the virus infectivity. Three mutations were quite frequent, occurring in over 0.1% of the total sequences. These were S929T, D936Y, and S949F, all in the N-terminal half of the HR1 fusion core segment and particularly spread in Europe and USA. The most frequent of them, D936Y, was present in 17% of sequences from Finland and 12% of sequences from Sweden. In the post-fusion conformation of the unmutated S protein, D936 is involved in an inter-monomer salt bridge with R1185. We investigated the effect of the D936Y mutation on the pre-fusion and post-fusion state of the protein by using molecular dynamics, showing how it especially affects the latter one.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


2015 ◽  
Vol 90 (1) ◽  
pp. 521-532 ◽  
Author(s):  
Crystal L. Moyer ◽  
Eli S. Besser ◽  
Glen R. Nemerow

ABSTRACTProteolytic maturation drives the conversion of stable, immature virus particles to a mature, metastable state primed for cell infection. In the case of human adenovirus, this proteolytic cleavage is mediated by the virally encoded protease AVP. Protein VI, an internal capsid cement protein and substrate for AVP, is cleaved at two sites, one of which is near the N terminus of the protein. In mature capsids, the 33 residues at the N terminus of protein VI (pVIn) are sequestered inside the cavity formed by peripentonal hexon trimers at the 5-fold vertex. Here, we describe a glycine-to-alanine mutation in the N-terminal cleavage site of protein VI that profoundly impacts proteolytic processing, the generation of infectious particles, and cell entry. The phenotypic effects associated with this mutant provide a mechanistic framework for understanding the multifunctional nature of protein VI. Based on our findings, we propose that the primary function of the pVIn peptide is to mediate interactions between protein VI and hexon during virus replication, driving hexon nuclear accumulation and particle assembly. Once particles are assembled, AVP-mediated cleavage facilitates the release of the membrane lytic region at the amino terminus of mature VI, allowing it to lyse the endosome during cell infection. These findings highlight the importance of a single maturation cleavage site for both infectious particle production and cell entry and emphasize the exquisite spatiotemporal regulation governing adenovirus assembly and disassembly.IMPORTANCEPostassembly virus maturation is a cornerstone principle in virology. However, a mechanistic understanding of how icosahedral viruses utilize this process to transform immature capsids into infection-competent particles is largely lacking. Adenovirus maturation involves proteolytic processing of seven precursor proteins. There is currently no information for the role of each independent cleavage event in the generation of infectious virions. To address this, we investigated the proteolytic maturation of one adenovirus precursor molecule, protein VI. Structurally, protein VI cements the outer capsid shell and links it to the viral core. Functionally, protein VI is involved in endosome disruption, subcellular trafficking, transcription activation, and virus assembly. Our studies demonstrate that the multifunctional nature of protein VI is largely linked to its maturation. Through mutational analysis, we show that disrupting the N-terminal cleavage of preprotein VI has major deleterious effects on the assembly of infectious virions and their subsequent ability to infect host cells.


Author(s):  
Luigi Cavallo ◽  
Romina Oliva

AbstractThe iconic “red crown” of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is made of its spike (S) glycoprotein. The S protein is the Trojan horse of coronaviruses, mediating their entry into the host cells. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On April 21st, the GISAID resource had collected 10,823 SARS-CoV-2 genomic sequences. We extracted from them all the complete S protein sequences and identified point mutations thereof. Six mutations were located on a 14-residue segment (929-943) in the “fusion core” of the heptad repeat 1 (HR1). Our modeling in the pre- and post-fusion S protein conformations revealed, for three of them, the loss of interactions stabilizing the post-fusion assembly. On May 29th, the SARS-CoV-2 genomic sequences in GISAID were 34,805. An analysis of the occurrences of the HR1 mutations in this updated dataset revealed a significant increase for the S929I and S939F mutations and a dramatic increase for the D936Y mutation, which was particularly widespread in Sweden and Wales/England. We notice that this is also the mutation causing the loss of a strong inter-monomer interaction, the D936-R1185 salt bridge, thus clearly weakening the post-fusion assembly.


Author(s):  
Serena H. Chen ◽  
M. Todd Young ◽  
John Gounley ◽  
Christopher Stanley ◽  
Debsindhu Bhowmik

AbstractThe emergence and rapid worldwide spread of the novel coronavirus disease, COVID-19, has prompted concerted efforts to find successful treatments. The causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses its spike (S) protein to gain entry into host cells. Therefore, the S protein presents a viable target to develop a directed therapy. Here, we deployed an integrated artificial intelligence with molecular dynamics simulation approach to provide new details of the S protein structure. Based on a comprehensive structural analysis of S proteins from SARS-CoV-2 and previous human coronaviruses, we found that the protomer state of S proteins is structurally flexible. Without the presence of a stabilizing beta sheet from another protomer chain, two regions in the S2 domain and the hinge connecting the S1 and S2 subunits lose their secondary structures. Interestingly, the region in the S2 domain was previously identified as an immunodominant site in the SARS-CoV-1 S protein. We anticipate that the molecular details elucidated here will assist in effective therapeutic development for COVID-19.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2219-2219
Author(s):  
Roisin Walshe ◽  
Mettine H.A. Bos ◽  
Rodney M. Camire

Abstract Abstract 2219 Blood coagulation factor V (FV) is a multi-domain protein (A1-A2-B-A3-C1-C2) with little or no procoagulant activity and circulates in blood as a procofactor. Recent data indicate that specific sequences within the B-domain (963-1008) play a predominant role in keeping FV inactive. Removing these sequences via deletion or mutagenesis drives the activation of FV. In normal physiological situations, proteolytic processing of FV by thrombin within the B-domain (710-1545) ultimately removes these inhibitory sequences. Thrombin cleaves FV at three sites in a kinetically preferred order at Arg709, Arg1018 followed by Arg1545 to ultimately generate the active cofactor species, FVa consisting of a heavy and light chain. The need for three thrombin cleavage sites to generate an active cofactor species is not entirely obvious considering that RVV-V, a snake venom protease, activates FV following a single cleavage at Arg1545. Here we uncover new structure/function insights into how specific B-domain sequences restrict thrombin recognition of FV thereby forcing the need for three cleavage sites. To investigate this, we generated a panel of recombinant FV derivatives in BHK cells with different regions of the B-domain eliminated and combined functional measurements with SDS-PAGE to examine FV activation. As a control, we generated FV-1033 (residues 1034–1491 deleted) which is functionally equivalent to full-length FV and retains all three thrombin cleavage sites. Like FV, incubation of FV-1033 with thrombin resulted in rapid cleavage at Arg709, to generate the heavy chain (105 kDa) followed by cleavage at Arg1018 and Arg1545 to produce the light chain (74 kDa). In contrast to these results, elimination of the Arg1018 cleavage site via mutagenesis (FV-1033R1018Q) or deletion (FV-1015; 1016–1491 deleted) dramatically delayed cleavage at Arg1545 while proteolysis at Arg709 was unaltered compared to FV-1033. Control experiments with RVV-V revealed that FV-1033R1018Q and FV-1015 were rapidly cleaved at Arg1545 similar to FV-1033. These data are consistent with prior mutagenesis studies with full length FV and collectively suggest that the middle cleavage site somehow potentiates cleavage at 1545. However, further elimination of the B-domain using FV-902 (903-1491 deleted; Arg1018 not present) surprisingly restored rapid cleavage at Arg1545. These data suggest that sequences N-terminal to the 1018 site (902-1017) are involved in regulating thrombin cleavage at Arg1545 and that the purpose of cleavage at Arg1018 is to remove these constraints. In support of this, FV derivatives in which these sequences are exchanged with non-homologous regions of the FVIII B-domain were rapidly cleaved at Arg1545 whether or not Arg1018 was present. Furthermore, we were able to demonstrate that residues 964–1007 are the principal determinants in restricting thrombin cleavage at Arg1545. Functional measurements, including clotting assays, thrombin generation assays, and purified component systems revealed that FV derivatives which exhibited delayed cleavage at Arg1545 all have a markedly reduced ability to generate thrombin compared to FV-1033 or FV. Collectively these data demonstrate that FV cleavage site preferences are not only influenced by the geometric constraints imposed on thrombin but are also influenced in a dramatic way by specific B-domain sequences adjacent to Arg1018. These sequences, which conformationally restrict the ability of thrombin to access Arg1545, affect the rate and order of bond cleavage. Thus proteolysis at Arg1018 is required to alleviate these constraints allowing for accelerated cleavage at Arg1545 by thrombin. Furthermore, initial cleavage at Arg709 appears unaltered by any region of the B-domain as each of FV derivatives studied show equivalent processing at this site. These data provide new structure/function insights into the relationship between the removal of B-domain constraints and accessibility of thrombin cleavage sites which lead to the activation of FV. Disclosures: Camire: Pfizer: Patents & Royalties, Research Funding.


2009 ◽  
Vol 83 (21) ◽  
pp. 11133-11141 ◽  
Author(s):  
Shutoku Matsuyama ◽  
Fumihiro Taguchi

ABSTRACT The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245853
Author(s):  
Chul Jun Goh ◽  
Yoonsoo Hahn

Potyviruses encode a large polyprotein that undergoes proteolytic processing, producing 10 mature proteins: P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb-RdRp, and CP. While P1/HC-Pro and HC-Pro/P3 junctions are cleaved by P1 and HC-Pro, respectively, the remaining seven are processed by NIa-Pro. In this study, we analyzed 135 polyprotein sequences from approved potyvirus species and deduced the consensus amino acid residues at five positions (from −4 to +1, where a protease cleaves between −1 and +1) in each of nine cleavage sites. In general, the newly deduced consensus sequences were consistent with the previous ones. However, seven NIa-Pro cleavage sites showed distinct amino acid preferences despite being processed by the same protease. At position −2, histidine was the dominant amino acid residue in most cleavage sites (57.8–60.7% of analyzed sequences), except for the NIa-Pro/NIb-RdRp junction where it was absent. At position −1, glutamine was highly dominant in most sites (88.2–97.8%), except for the VPg/NIa-Pro junction where glutamic acid was found in all the analyzed proteins (100%). At position +1, serine was the most abundant residue (47.4–86.7%) in five out of seven sites, while alanine (52.6%) and glycine (82.2%) were the most abundant in the P3/6K1 and 6K2/VPg junctions, respectively. These findings suggest that each NIa-Pro cleavage site is finely tuned for differential characteristics of proteolytic reactions. The newly deduced consensus sequences may be useful resources for the development of models and methods to accurately predict potyvirus polyprotein processing sites.


Sign in / Sign up

Export Citation Format

Share Document