scholarly journals SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Palur V Raghuvamsi ◽  
Nikhil Kumar Tulsian ◽  
Firdaus Samsudin ◽  
Xinlei Qian ◽  
Kiren Purushotorman ◽  
...  

The Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Our findings highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as alternate allosteric hotspot targets for potential therapeutic development.

2020 ◽  
Author(s):  
Palur Raghuvamsi ◽  
Nikhil Tulsian ◽  
Firdaus Samsudin ◽  
Xinlei Qian ◽  
Kiren Purushotorman ◽  
...  

AbstractThe Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells through surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, we have mapped the S:ACE2 interface and uncovered long-range allosteric propagation of ACE2 binding to sites critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~ 130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a mechanistic basis for S:ACE2 complex formation, critical for proteolytic processing and viral-host membrane fusion and highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as allosterically exposed cryptic hotspots for potential therapeutic development.One Sentence SummarySARS-CoV-2 spike protein binding to receptor ACE2 allosterically enhances furin proteolysis at distal S1/S2 cleavage sites


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2622
Author(s):  
Romina Oliva ◽  
Abdul Rajjak Shaikh ◽  
Andrea Petta ◽  
Anna Vangone ◽  
Luigi Cavallo

The crown of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constituted by its spike (S) glycoprotein. S protein mediates the SARS-CoV-2 entry into the host cells. The “fusion core” of the heptad repeat 1 (HR1) on S plays a crucial role in the virus infectivity, as it is part of a key membrane fusion architecture. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On 15 February 2021, from the SARS-CoV-2 genomic sequences in the GISAID resource, we collected 415,673 complete S protein sequences and identified all the mutations occurring in the HR1 fusion core. This is a 21-residue segment, which, in the post-fusion conformation of the protein, gives many strong interactions with the heptad repeat 2, bringing viral and cellular membranes in proximity for fusion. We investigated the frequency and structural effect of novel mutations accumulated over time in such a crucial region for the virus infectivity. Three mutations were quite frequent, occurring in over 0.1% of the total sequences. These were S929T, D936Y, and S949F, all in the N-terminal half of the HR1 fusion core segment and particularly spread in Europe and USA. The most frequent of them, D936Y, was present in 17% of sequences from Finland and 12% of sequences from Sweden. In the post-fusion conformation of the unmutated S protein, D936 is involved in an inter-monomer salt bridge with R1185. We investigated the effect of the D936Y mutation on the pre-fusion and post-fusion state of the protein by using molecular dynamics, showing how it especially affects the latter one.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


2015 ◽  
Vol 90 (1) ◽  
pp. 521-532 ◽  
Author(s):  
Crystal L. Moyer ◽  
Eli S. Besser ◽  
Glen R. Nemerow

ABSTRACTProteolytic maturation drives the conversion of stable, immature virus particles to a mature, metastable state primed for cell infection. In the case of human adenovirus, this proteolytic cleavage is mediated by the virally encoded protease AVP. Protein VI, an internal capsid cement protein and substrate for AVP, is cleaved at two sites, one of which is near the N terminus of the protein. In mature capsids, the 33 residues at the N terminus of protein VI (pVIn) are sequestered inside the cavity formed by peripentonal hexon trimers at the 5-fold vertex. Here, we describe a glycine-to-alanine mutation in the N-terminal cleavage site of protein VI that profoundly impacts proteolytic processing, the generation of infectious particles, and cell entry. The phenotypic effects associated with this mutant provide a mechanistic framework for understanding the multifunctional nature of protein VI. Based on our findings, we propose that the primary function of the pVIn peptide is to mediate interactions between protein VI and hexon during virus replication, driving hexon nuclear accumulation and particle assembly. Once particles are assembled, AVP-mediated cleavage facilitates the release of the membrane lytic region at the amino terminus of mature VI, allowing it to lyse the endosome during cell infection. These findings highlight the importance of a single maturation cleavage site for both infectious particle production and cell entry and emphasize the exquisite spatiotemporal regulation governing adenovirus assembly and disassembly.IMPORTANCEPostassembly virus maturation is a cornerstone principle in virology. However, a mechanistic understanding of how icosahedral viruses utilize this process to transform immature capsids into infection-competent particles is largely lacking. Adenovirus maturation involves proteolytic processing of seven precursor proteins. There is currently no information for the role of each independent cleavage event in the generation of infectious virions. To address this, we investigated the proteolytic maturation of one adenovirus precursor molecule, protein VI. Structurally, protein VI cements the outer capsid shell and links it to the viral core. Functionally, protein VI is involved in endosome disruption, subcellular trafficking, transcription activation, and virus assembly. Our studies demonstrate that the multifunctional nature of protein VI is largely linked to its maturation. Through mutational analysis, we show that disrupting the N-terminal cleavage of preprotein VI has major deleterious effects on the assembly of infectious virions and their subsequent ability to infect host cells.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6090
Author(s):  
Jingjing Li ◽  
Dongge Xu ◽  
Lingling Wang ◽  
Mengyu Zhang ◽  
Guohai Zhang ◽  
...  

Glycyrrhizic acid (GA), also known as glycyrrhizin, is a triterpene glycoside isolated from plants of Glycyrrhiza species (licorice). GA possesses a wide range of pharmacological and antiviral activities against enveloped viruses including severe acute respiratory syndrome (SARS) virus. Since the S protein (S) mediates SARS coronavirus 2 (SARS-CoV-2) cell attachment and cell entry, we assayed the GA effect on SARS-CoV-2 infection using an S protein-pseudotyped lentivirus (Lenti-S). GA treatment dose-dependently blocked Lenti-S infection. We showed that incubation of Lenti-S virus, but not the host cells with GA prior to the infection, reduced Lenti-S infection, indicating that GA targeted the virus for infection. Surface plasmon resonance measurement showed that GA interacted with a recombinant S protein and blocked S protein binding to host cells. Autodocking analysis revealed that the S protein has several GA-binding pockets including one at the interaction interface to the receptor angiotensin-converting enzyme 2 (ACE2) and another at the inner side of the receptor-binding domain (RBD) which might impact the close-to-open conformation change of the S protein required for ACE2 interaction. In addition to identifying GA antiviral activity against SARS-CoV-2, the study linked GA antiviral activity to its effect on virus cell binding.


Author(s):  
Luigi Cavallo ◽  
Romina Oliva

AbstractThe iconic “red crown” of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is made of its spike (S) glycoprotein. The S protein is the Trojan horse of coronaviruses, mediating their entry into the host cells. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On April 21st, the GISAID resource had collected 10,823 SARS-CoV-2 genomic sequences. We extracted from them all the complete S protein sequences and identified point mutations thereof. Six mutations were located on a 14-residue segment (929-943) in the “fusion core” of the heptad repeat 1 (HR1). Our modeling in the pre- and post-fusion S protein conformations revealed, for three of them, the loss of interactions stabilizing the post-fusion assembly. On May 29th, the SARS-CoV-2 genomic sequences in GISAID were 34,805. An analysis of the occurrences of the HR1 mutations in this updated dataset revealed a significant increase for the S929I and S939F mutations and a dramatic increase for the D936Y mutation, which was particularly widespread in Sweden and Wales/England. We notice that this is also the mutation causing the loss of a strong inter-monomer interaction, the D936-R1185 salt bridge, thus clearly weakening the post-fusion assembly.


Author(s):  
Serena H. Chen ◽  
M. Todd Young ◽  
John Gounley ◽  
Christopher Stanley ◽  
Debsindhu Bhowmik

AbstractThe emergence and rapid worldwide spread of the novel coronavirus disease, COVID-19, has prompted concerted efforts to find successful treatments. The causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses its spike (S) protein to gain entry into host cells. Therefore, the S protein presents a viable target to develop a directed therapy. Here, we deployed an integrated artificial intelligence with molecular dynamics simulation approach to provide new details of the S protein structure. Based on a comprehensive structural analysis of S proteins from SARS-CoV-2 and previous human coronaviruses, we found that the protomer state of S proteins is structurally flexible. Without the presence of a stabilizing beta sheet from another protomer chain, two regions in the S2 domain and the hinge connecting the S1 and S2 subunits lose their secondary structures. Interestingly, the region in the S2 domain was previously identified as an immunodominant site in the SARS-CoV-1 S protein. We anticipate that the molecular details elucidated here will assist in effective therapeutic development for COVID-19.


2009 ◽  
Vol 83 (21) ◽  
pp. 11133-11141 ◽  
Author(s):  
Shutoku Matsuyama ◽  
Fumihiro Taguchi

ABSTRACT The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.


Author(s):  
Xuesen Zhao ◽  
Danying Chen ◽  
Robert Szabla ◽  
Mei Zheng ◽  
Guoli Li ◽  
...  

ABSTRACTThe COVID-19 pandemic has caused an unprecedented global public health and economy crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, comparing to the SARS-CoV-2-like CoVs identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human ACE2 as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2 from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activity, respectively. Among the remaining species, ACE2 from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.ImportanceSARS-CoV-2 uses human ACE2 as primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologues and found that wild type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models and molecular basis of receptor binding for SARS-CoV-2.


2006 ◽  
Vol 75 (1) ◽  
pp. 184-192 ◽  
Author(s):  
Jane W. Wanyiri ◽  
Roberta O'Connor ◽  
Geneve Allison ◽  
Kami Kim ◽  
Anne Kane ◽  
...  

ABSTRACT The apicomplexan parasite Cryptosporidium causes diarrheal disease worldwide. Proteolytic processing of proteins plays a significant role in host cell invasion by apicomplexan parasites. In previous studies, we described gp40/15, a Cryptosporidium sp. glycoprotein that is proteolytically cleaved to yield two surface glycopeptides (gp40 and gp15), which are implicated in mediating infection of host cells. In the present study, we showed that biosynthetically labeled gp40/15 is processed in Cryptosporidium parvum-infected HCT-8 cells. We identified a putative furin cleavage site RSRR↓ in the deduced amino acid sequence of gp40/15 from C. parvum and from all Cryptosporidium hominis subtypes except subtype 1e. Both human furin and a protease activity present in a C. parvum lysate cleaved recombinant C. parvum gp40/15 protein into 2 peptides, identified as gp40 and gp15 by size and by immunoreactivity with specific antibodies. C. hominis gp40/15 subtype 1e, in which the RSRR sequence is replaced by ISKR, has an alternative furin cleavage site (KSISKR↓) and was also cleaved by both furin and the C. parvum lysate. Site-directed mutagenesis of the C. parvum RSRR sequence to ASRR resulted in inhibition of cleavage by furin and the C. parvum lysate. Cleavage of recombinant gp40/15 and a synthetic furin substrate by the C. parvum lysate was inhibited by serine protease inhibitors, by the specific furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-cmk), and by calcium chelators, suggesting that the parasite expresses a Ca2+ dependent, furin-like protease activity. The furin inhibitor Dec-RVKR-cmk decreased C. parvum infection of HCT-8 cells, suggesting that a furin-like protease activity may be involved in mediating host-parasite interactions.


Sign in / Sign up

Export Citation Format

Share Document