scholarly journals Elucidating the viral and host factors enabling the cross-species transmission of primate lentiviruses from simians to humans

2020 ◽  
Author(s):  
Denis M. Tebit ◽  
Gabrielle Nickel ◽  
Richard Gibson ◽  
Crystal Carpenter ◽  
Myriam Rodriguez ◽  
...  

AbstractThe HIV-1 epidemic originated from a cross-species transmission of a primate lentivirus from chimpanzees to humans near the turn of the 18th century. Simian immunodeficiency viruses have been jumping between old world monkeys in West/Central Africa for thousands of years. So why did HIV-1 only emerge in the past century? This study examined the replicative fitness, transmission, restriction, and cytopathogenicity of 26 primate lentiviruses. Pairwise competitions of these primate lentiviruses revealed that SIVcpz had the highest replicative fitness in human or chimpanzee peripheral blood mononuclear cells, even higher fitness than HIV-1 group M strains responsible for 37 million infections worldwide. In contrast the “HIV-2 lineage” (SIVsmm, SIVmac, SIVagm, and HIV-2) had the lowest replicative fitness. SIVcpz strains were less inhibited by human restriction factors than the “HIV-2 lineage” strains, a restriction that was inversely correlated with replicative fitness. SIVcpz from the chimpanzee subspecies Pan troglodytes troglodytes (Ptt) was slightly more fit in human cells than the strains from Pt schweinfurthii (Pts). However, unlike all other primate lentiviruses (including the HIV-2 lineage), SIVcpz was nonpathogenic in human tonsillar tissue and did not deplete CD4+ T-cells, consistent with the slow or nonpathogenic disease observed in chimpanzees. Despite the close phylogenetic relationship between SIVcpz_Ptt and HIV-1, this epidemic was either caused by cross species transmission of a rare, undiscovered SIVcpz strain of higher virulence or higher virulence differentially evolved among HIV-1 subtypes during the human epidemic.Author summaryInvasion of wild animal habitats by humans can have devastating consequences for the human population as evident by the HIV-1 and SARS-CoV-2 epidemics. With SARS-CoV-2, a recent zoonotic jump, likely from bats, will help to identify a coronavirus progenitor. In contrast, simian immunodeficiency virus (SIV) jumped into humans over 100 years ago from a possibly extinct sub-species of chimpanzees and/or extinct lineage of SIV. We examined replicative fitness and pathogenesis of 26 different primate lentiviruses in human and chimpanzee primary lymphoid cells from blood and within tonsils. SIV from a specific chimpanzee species and lowland gorillas were the most capable of infecting and replicating in human and chimp lymphoid cells but they did not result in the pathogenesis related to disease in humans. In contrast, SIV from other old world monkeys were pathogenic but could not replicate efficiently in human cells. We propose the main HIV-1 is derived from a distinct jump of a very rare SIV strain in chimps leading to AIDS pandemic.

2007 ◽  
Vol 81 (24) ◽  
pp. 13852-13864 ◽  
Author(s):  
Jan Münch ◽  
Devi Rajan ◽  
Michael Schindler ◽  
Anke Specht ◽  
Elke Rücker ◽  
...  

ABSTRACT Nef is a multifunctional accessory protein of primate lentiviruses. Recently, it has been shown that the ability of Nef to downmodulate CD4, CD28, and class I major histocompatibility complex is highly conserved between most or all primate lentiviruses, whereas Nef-mediated downregulation of T-cell receptor-CD3 was lost in the lineage that gave rise to human immunodeficiency virus type 1 (HIV-1). Whether or not other Nef activities are preserved between different groups of primate lentiviruses remained to be determined. Here, we show that nef genes from a large variety of HIVs and simian immunodeficiency viruses (SIVs) enhance virion infectivity and stimulate viral replication in human cells and/or in ex vivo infected human lymphoid tissue (HLT). Notably, nef alleles from unpassaged SIVcpz and SIVsmm enhanced viral infectivity, replication, and cytopathicity in cell culture and in ex vivo infected HLT as efficiently as those from HIV-1 and HIV-2, their human counterparts. Furthermore, nef genes from several highly divergent SIVs that have not been found in humans were also highly active in human cells and/or tissues. Thus, most primate lentiviral Nefs enhance virion infectivity and stimulate viral replication. Moreover, our data show that SIVcpz and SIVsmm Nefs do not require adaptive changes to perform these functions in human cells or tissues and support the idea that nef alleles from other primate lentiviruses would also be capable of promoting efficient virus spread in humans.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Yuanfei Wu ◽  
Balaji Olety ◽  
Eric R. Weiss ◽  
Elena Popova ◽  
Hikaru Yamanaka ◽  
...  

ABSTRACTIt has recently emerged that HIV-1 Nef counteracts the antiviral host proteins SERINC3 and SERINC5. In particular, SERINC5 inhibits the infectivity of progeny virions when incorporated. SERINC3 and SERINC5 are also counteracted by the unrelated murine leukemia virus glycosylated Gag (glycoGag) protein, which possesses a potent Nef-like activity on HIV-1 infectivity. We now report that a minimal glycoGag termed glycoMA can fully substitute for Nef in promoting HIV-1 replication in Jurkat T lymphoid cells, indicating that Nef enhances replication in these cells mainly by counteracting SERINCs. In contrast, the SERINC antagonist glycoMA was unable to substitute for Nef in MOLT-3 T lymphoid cells, in which HIV-1 replication was highly dependent on Nef, and remained so even in the absence of SERINC3 and SERINC5. As in MOLT-3 cells, glycoMA was unable to substitute for Nef in stimulating HIV-1 replication in primary human cells. Although the ability of Nef mutants to promote HIV-1 replication in MOLT-3 cells correlated with the ability to engage endocytic machinery and to downregulate CD4, Nef nevertheless rescued virus replication under conditions where CD4 downregulation did not occur. Taken together, our observations raise the possibility that Nef triggers the endocytosis of a novel antiviral factor that is active against both laboratory-adapted and primary HIV-1 strains.IMPORTANCEThe Nef protein of HIV-1 and the unrelated glycoGag protein of a murine leukemia virus similarly prevent the uptake of antiviral host proteins called SERINC3 and SERINC5 into HIV-1 particles, which enhances their infectiousness. We now show that although both SERINC antagonists can in principle similarly enhance HIV-1 replication, glycoGag is unable to substitute for Nef in primary human cells and in a T cell line called MOLT-3. In MOLT-3 cells, Nef remained crucial for HIV-1 replication even in the absence of SERINC3 and SERINC5. The pronounced effect of Nef on HIV-1 spreading in MOLT-3 cells correlated with the ability of Nef to engage cellular endocytic machinery and to downregulate the HIV-1 receptor CD4 but nevertheless persisted in the absence of CD4 downregulation. Collectively, our results provide evidence for a potent novel restriction activity that affects even relatively SERINC-resistant HIV-1 isolates and is counteracted by Nef.


Science ◽  
2007 ◽  
Vol 318 (5856) ◽  
pp. 1565-1566 ◽  
Author(s):  
M. Stremlau
Keyword(s):  

2005 ◽  
Vol 79 (7) ◽  
pp. 3930-3937 ◽  
Author(s):  
Byeongwoon Song ◽  
Hassan Javanbakht ◽  
Michel Perron ◽  
Do Hyun Park ◽  
Matthew Stremlau ◽  
...  

ABSTRACT The TRIM5α proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5α orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5α proteins functionally resembled human TRIM5α, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5α proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5α, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5α B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5α proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5α proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.


2007 ◽  
Vol 52 (2) ◽  
pp. 648-654 ◽  
Author(s):  
Adrian S. Ray ◽  
Jennifer E. Vela ◽  
Constantine G. Boojamra ◽  
Lijun Zhang ◽  
Hon Hui ◽  
...  

ABSTRACT GS-9131 is a phosphonoamidate prodrug of the novel ribose-modified phosphonate nucleotide analog GS-9148 that demonstrates potent anti-human immunodeficiency virus type 1 (HIV-1) activity and an excellent resistance profile in vitro. Prodrug moieties were optimized for the efficient delivery of GS-9148 and its active diphosphate (DP) metabolite to lymphoid cells following oral administration. To understand the intracellular pharmacology of GS-9131, incubations were performed with various types of lymphoid cells in vitro. The intracellular accumulation and antiviral activity levels of GS-9148 were limited by its lack of cellular permeation, and GS-9131 increased the delivery of GS-9148-DP by 76- to 290-fold relative to that of GS-9148. GS-9131 activation was saturable at high extracellular concentrations, potentially due to a high-affinity promoiety cleavage step. Once inside the cells, GS-9148 was efficiently phosphorylated, forming similar amounts of anabolites in primary lymphoid cells. The levels of GS-9148-DP formed in peripheral blood mononuclear cells infected with HIV-1 were similar to that in uninfected PBMCs, and approximately equivalent intracellular concentrations of GS-9148-DP and tenofovir (TVF)-DP were required to inhibit viral replication by 90%. Once it was formed, GS-9148-DP was efficiently retained in activated CD4+ cells, with a half-life of 19 h. In addition, GS-9131 showed a low potential for drug interactions with other adenine nucleoside/nucleotide reverse transcriptase inhibitors, based on the lack of competition for anabolism between suprapharmacologic concentrations of GS-9148 and TVF and the lack of activity of GS-9131 metabolites against purine nucleoside phosphorylase, an enzyme involved in the clearance of 2′,3′-dideoxyinosine. Together, these observations elucidate the cellular pharmacology of GS-9131 and illustrate its efficient loading of lymphoid cells, resulting in a prolonged intracellular exposure to the active metabolite GS-9148-DP.


1999 ◽  
Vol 73 (7) ◽  
pp. 5577-5585 ◽  
Author(s):  
José A. Esté ◽  
Cecilia Cabrera ◽  
Julià Blanco ◽  
Arantxa Gutierrez ◽  
Gary Bridger ◽  
...  

ABSTRACT The emergence of X4 human immunodeficiency virus type 1 (HIV-1) strains in HIV-1-infected individuals has been associated with CD4+ T-cell depletion, HIV-mediated CD8+ cell apoptosis, and an impaired humoral response. The bicyclam AMD3100, a selective antagonist of CXCR4, selected for the outgrowth of R5 virus after cultivation of mixtures of the laboratory-adapted R5 (BaL) and X4 (NL4-3) HIV strains in the presence of the compound. The addition of AMD3100 to peripheral blood mononuclear cells infected with X4 or R5X4 clinical HIV isolates displaying the syncytium-inducing phenotype resulted in a complete suppression of X4 variants and a concomitant genotypic change in the V2 and V3 loops of the envelope gp120 glycoprotein. The recovered viruses corresponded genotypically and phenotypically to R5 variants in that they could no longer use CXCR4 as coreceptor or induce syncytium formation in MT-2 cells. Furthermore, the phenotype and genotype of a cloned R5 HIV-1 virus converted to those of the R5X4 virus after prolonged culture in lymphoid cells. However, these changes did not occur when the infected cells were cultured in the presence of AMD3100, despite low levels of virus replication. Our findings indicate that selective blockade of the CXCR4 receptor prevents the switch from the less pathogenic R5 HIV to the more pathogenic X4 HIV strains, a process that heralds the onset of AIDS. In this article, we show that it could be possible to redirect the evolution of HIV so as to impede the emergence of X4 strains or to change the phenotype of already-existing X4 isolates to R5.


Nature ◽  
2004 ◽  
Vol 427 (6977) ◽  
pp. 848-853 ◽  
Author(s):  
Matthew Stremlau ◽  
Christopher M. Owens ◽  
Michel J. Perron ◽  
Michael Kiessling ◽  
Patrick Autissier ◽  
...  

Author(s):  
R. W. Cole ◽  
J. C. Kim

In recent years, non-human primates have become indispensable as experimental animals in many fields of biomedical research. Pharmaceutical and related industries alone use about 2000,000 primates a year. Respiratory mite infestations in lungs of old world monkeys are of particular concern because the resulting tissue damage can directly effect experimental results, especially in those studies involving the cardiopulmonary system. There has been increasing documentation of primate parasitology in the past twenty years.


Sign in / Sign up

Export Citation Format

Share Document