b30.2 domain
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

18
(FIVE YEARS 0)

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1252
Author(s):  
Beibei Qin ◽  
Tiaoyi Xiao ◽  
Chunhua Ding ◽  
Yadong Deng ◽  
Zhao Lv ◽  
...  

Tripartite motif proteins (TRIMs), especially B30.2 domain-containing TRIMs (TRIMs-B30.2), are increasingly well known for their antiviral immune functions in mammals, while antiviral TRIMs are far from being identified in teleosts. In the present study, we identified a total of 42 CiTRIMs from the genome of grass carp, Ctenopharyngodon idella, an important cultured teleost in China, based on hmmsearch and SMART analysis. Among these CiTRIMs, the gene loci of 37 CiTRIMs were located on different chromosomes and shared gene collinearities with homologous counterparts from human and zebrafish genomes. They possessed intact conserved RBCC or RB domain assemblies at their N-termini and eight different domains, including the B30.2 domain, at their C-termini. A total of 19 TRIMs-B30.2 were identified, and most of them were clustered into a large branch of CiTRIMs in the dendrogram. Tissue expression analysis showed that 42 CiTRIMs were universally expressed in various grass carp tissues. A total of 11 significantly differentially expressed CiTRIMs were found in two sets of grass carp transcriptomes during grass carp reovirus (GCRV) infection. Three of them, including Cibtr40, CiTRIM103 and CiTRIM109, which all belonged to TRIMs-B30.2, were associated with the type I interferon response during GCRV infection by weighted network co-expression and gene expression trend analyses, suggesting their involvement in antiviral immunity. These findings may offer useful information for understanding the structure, evolution, and function of TRIMs in teleosts and provide potential antiviral immune molecule markers for grass carp.


2020 ◽  
Vol 17 (1) ◽  
pp. 78-85
Author(s):  
Sepideh Parvizpour ◽  
Ashraf Fadhil Jomah ◽  
Jafar Razmara

Background: Familial Mediterranean Fever (FMF) is a prototypical hereditary autoinflammatory disease affecting principally Mediterranean populations and characterized by recurrent frequent fever and inflammation. The disease is essentially caused by inherited mutations in the MEFV gene which encodes pyrin protein. The reported mutations are mostly located on the B30.2 domain in the C-terminal end of the protein. Objective: The present study reports a structural comparison of the five most common mutated structures including M694V, V726A, M694I, R761H, and M680I. The aim of this study was to determine the structural and functional disorders caused by the mutations in the human pyrin protein. Results: The comparison revealed that all mutations make overall changes in the structure of the domain. Further, the effects of these mutations on structural and molecular behavior of the B30.2 domain were compared with the native structure using MD simulation by GROMACS software. The results revealed that all the studied mutants have a destabilizing effect on the protein structure. Additionally, analyzing the projection of the motions of the proteins in phase space demonstrates high rigidity of the mutated structures in comparison with the native protein. Conclusion: The results of simulations elucidate how the mutations affect the physiological functioning of the pyrin B30.2 domain and cause the occurrence of the FMF disease.


2018 ◽  
Vol 86 (6) ◽  
pp. 676-683 ◽  
Author(s):  
Grigor Arakelov ◽  
Vahram Arakelov ◽  
Karen Nazaryan

2018 ◽  
Vol 475 (2) ◽  
pp. 429-440 ◽  
Author(s):  
Akshay A. D'Cruz ◽  
Nadia J. Kershaw ◽  
Thomas J. Hayman ◽  
Edmond M. Linossi ◽  
Jessica J. Chiang ◽  
...  

The retinoic acid-inducible gene-I (RIG-I) receptor recognizes short 5′-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tripartite motif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 (caspase activation and recruitment domains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members.


2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Damien Morger ◽  
Franziska Zosel ◽  
Martin Bühlmann ◽  
Sara Züger ◽  
Maximilian Mittelviefhaus ◽  
...  

ABSTRACTRhesus TRIM5α (rhTRIM5α) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5α to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the precise site at which the B30.2 domain binds remain largely unknown. The human orthologue of TRIM5α (hsTRIM5α) fails to block infection by HIV-1 bothin vivoandin vitro. This is thought to be due to differences in binding to the capsid lattice. To map the species-specific binding surface on the HIV-1 capsid lattice, we used microscale thermophoresis and dual-focus fluorescence correlation spectroscopy to measure binding affinity of rhesus and human TRIM5α B30.2 domains to a series of HIV-1 capsid variants that mimic distinct capsid arrangements at each of the symmetry axes of the HIV-1 capsid lattice. These surrogates include previously characterized capsid oligomers, as well as a novel chemically cross-linked capsid trimer that contains cysteine substitutions near the 3-fold axis of symmetry. The results demonstrate that TRIM5α binding involves multiple capsid molecules along the 2-fold and 3-fold interfaces between hexamers and indicate that the binding interface at the 3-fold axis contributes to the well-established differences in restriction potency between TRIM5α orthologues.IMPORTANCETRIM5α is a cellular protein that fends off infection by retroviruses through binding to the viruses' protein shell surrounding its genetic material. This shell is composed of several hundred capsid proteins arranged in a honeycomb-like hexagonal pattern that is conserved across retroviruses. By binding to the complex lattice formed by multiple capsid proteins, rather than to a single capsid monomer, TRIM5α restriction activity persists despite the high mutation rate in retroviruses such as HIV-1. In rhesus monkeys, but not in humans, TRIM5α confers resistance to HIV-1. By measuring the binding of human and rhesus TRIM5α to a series of engineered HIV-1 capsid mimics of distinct capsid lattice interfaces, we reveal the HIV-1 capsid surface critical for species-specific binding by TRIM5α.


2017 ◽  
Vol 12 (10) ◽  
pp. 2631-2643 ◽  
Author(s):  
Mahboob Salim ◽  
Timothy J Knowles ◽  
Alfie T. Baker ◽  
Martin S. Davey ◽  
Mark Jeeves ◽  
...  
Keyword(s):  
T Cell ◽  

Open Biology ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 160009 ◽  
Author(s):  
Kerstin Howe ◽  
Philipp H. Schiffer ◽  
Julia Zielinski ◽  
Thomas Wiehe ◽  
Gavin K. Laird ◽  
...  

Multicellular eukaryotes have evolved a range of mechanisms for immune recognition. A widespread family involved in innate immunity are the NACHT-domain and leucine-rich-repeat-containing (NLR) proteins. Mammals have small numbers of NLR proteins, whereas in some species, mostly those without adaptive immune systems, NLRs have expanded into very large families. We describe a family of nearly 400 NLR proteins encoded in the zebrafish genome. The proteins share a defining overall structure, which arose in fishes after a fusion of the core NLR domains with a B30.2 domain, but can be subdivided into four groups based on their NACHT domains. Gene conversion acting differentially on the NACHT and B30.2 domains has shaped the family and created the groups. Evidence of positive selection in the B30.2 domain indicates that this domain rather than the leucine-rich repeats acts as the pathogen recognition module. In an unusual chromosomal organization, the majority of the genes are located on one chromosome arm, interspersed with other large multigene families, including a new family encoding zinc-finger proteins. The NLR-B30.2 proteins represent a new family with diversity in the specific recognition module that is present in fishes in spite of the parallel existence of an adaptive immune system.


2015 ◽  
Author(s):  
Kerstin Howe ◽  
Philipp Schiffer ◽  
Julia Zielinski ◽  
Thomas Wiehe ◽  
Gavin Laird ◽  
...  

Animals and plants have evolved a range of mechanisms for recognizing noxious substances and organisms. A particular challenge, most successfully met by the adaptive immune system in vertebrates, is the specific recognition of potential pathogens, which themselves evolve to escape recognition. A variety of genomic and evolutionary mechanisms shape large families of proteins dedicated to detecting pathogens and create the diversity of binding sites needed for epitope recognition. One family involved in innate immunity are the NACHT-domain-and Leucine-Rich-Repeat-containing (NLR) proteins. Mammals have a small number of NLR proteins, which are involved in first-line immune defense and recognize several conserved molecular patterns. However, there is no evidence that they cover a wider spectrum of differential pathogenic epitopes. In other species, mostly those without adaptive immune systems, NLRs have expanded into very large families. A family of nearly 400 NLR proteins is encoded in the zebrafish genome. They are subdivided into four groups defined by their NACHT and effector domains, with a characteristic overall structure that arose in fishes from a fusion of the NLR domains with a domain used for immune recognition, the B30.2 domain. The majority of the genes are located on one chromosome arm, interspersed with other large multi-gene families, including a new family encoding proteins with multiple tandem arrays of Zinc fingers. This chromosome arm may be a hot spot for evolutionary change in the zebrafish genome. NLR genes not on this chromosome tend to be located near chromosomal ends. Extensive duplication, loss of genes and domains, exon shuffling and gene conversion acting differentially on the NACHT and B30.2 domains have shaped the family. Its four groups, which are conserved across the fishes, are homogenised within each group by gene conversion, while the B30.2 domain is subject to gene conversion across the groups. Evidence of positive selection on diversifying mutations in the B30.2 domain, probably driven by pathogen interactions, indicates that this domain rather than the LRRs acts as a recognition domain. The NLR-B30.2 proteins represent a new family with diversity in the specific recognition module that is present in fishes in spite of the parallel existence of an adaptive immune system.


Sign in / Sign up

Export Citation Format

Share Document