scholarly journals High Fat Diet Stimulates Beta-Oxidation, Alters Electrical Properties and Induces Adipogenicity of Atria in Obese Mice

2020 ◽  
Author(s):  
Nadine Suffee ◽  
Elodie Baptista ◽  
Jérôme Piquereau ◽  
Maharajah Ponnaiah ◽  
Nicolas Doisne ◽  
...  

SUMMARYMetabolic disorders such as obesity are risk factors of atrial fibrillation, not only by sharing comorbidities but likely through their direct impact on atria, notably its adipogenicity. Here, we submitted mice that lack cardiac adipose tissue to a high fat diet and first studied the atrial metabolomic and lipidomic phenotypes using liquid chromatography-mass spectrometry. We found an increased consumption of free fatty acid by the beta-oxidation and an accumulation of long-chain lipids in atria of obese mice. Free fatty acid was the main substrate of mitochondrial respiration studied in the saponin-permeabilized atrial muscle. Conducted action potential recorded in atrial trabeculae was short, and ATP-sensitive potassium current was increased in perforated patch-clamp atrial myocytes of obese mice. There was histological and phenotypical evidence for an accumulation of adipose tissue in obese mice atria. Thus, an obesogenic diet transforms the energy metabolism, causes fat accumulation and induces electrical remodeling of atria myocardium.HIGHLIGHTS- Untargeted metabolomic and lipidomic analysis revealed that a high fat diet induces profound transformation of atrial energy metabolism with beta-oxidation activation and long-chain lipid accumulation.- Mitochondria respiration studied in atrial myocardial trabecula preferentially used Palmitoyl-CoA as energy substrate in obese mice.- Atria of obese mice become vulnerable to atrial fibrillation and show short action potential due to the activation of K-ATP dependent potassium current.- Adipocytes and fat molecular markers were detected in atria of obese mice together with an inflammatory profile consistence with a myocardial accumulation of fat.

2019 ◽  
Vol 150 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Jay J Cao ◽  
Brian R Gregoire ◽  
Kim G Michelsen ◽  
Matthew J Picklo

ABSTRACT Background Intake of total fat is linked to obesity and inversely associated with bone density in humans. Epidemiologic and animal studies show that long-chain n–3 (ω-3) PUFAs supplied as fish oil (FO) are beneficial to skeletal health. Objective This study tested the hypothesis that increasing dietary FO would decrease adiposity and improve bone-related outcomes in growing obese mice. Methods Male C57BL/6 mice at 6 wk old were assigned to 6 treatment groups and fed either a normal-fat diet (3.85 kcal/g and 10% energy as fat) or a high-fat diet (HF; 4.73 kcal/g and 45% energy as fat) containing either 0%, 3%, or 9% energy as FO (0FO, 3FO, and 9FO, respectively) ad libitum for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. Results The HF diet increased the expression of the adipose tissue tumor necrosis factor α (Tnfa) and serum concentrations of leptin and tartrate-resistant acid phosphatase (TRAP), and decreased serum concentrations of osteocalcin and bone-specific alkaline phosphatase (P < 0.05). FO decreased fat mass (P < 0.05), serum TRAP (P < 0.05), and adipose tissue Tnfa expression (P < 0.01). Bone content of long-chain n–3 PUFAs was increased and n–6 PUFAs were decreased with the elevation in dietary FO content (P < 0.01). Compared with mice fed 9FO, animals fed 3FO had higher femoral bone volume/total volume (25%), trabecular number (23%), connectivity density (82%), and bone mass of second lumbar vertebrae (12%) and lower femoral trabecular separation (−19%). Mice fed the 3FO HF diet had 42% higher bone mass than those fed the 0FO HF diet. Conclusions These data indicate increasing dietary FO ≤3% energy can decrease adiposity and mitigate HF diet–induced bone deterioration in growing C57BL/6 mice possibly by reducing inflammation and bone resorption. FO at 9% diet energy had no further beneficial effects on bone of obese mice.


2018 ◽  
Vol 315 (5) ◽  
pp. E1053-E1061 ◽  
Author(s):  
Anik Boudreau ◽  
Allison J. Richard ◽  
Jasmine A. Burrell ◽  
William T. King ◽  
Ruth Dunn ◽  
...  

An ethanolic extract of Artemisia scoparia (SCO) has metabolically favorable effects on adipocyte development and function in vitro and in vivo. In diet-induced obese mice, SCO supplementation significantly reduced fasting glucose and insulin levels. Given the importance of adipocyte lipolysis in metabolic health, we hypothesized that SCO modulates lipolysis in vitro and in vivo. Free fatty acids and glycerol were measured in the sera of mice fed a high-fat diet with or without SCO supplementation. In cultured 3T3-L1 adipocytes, the effects of SCO on lipolysis were assessed by measuring glycerol and free fatty acid release. Microarray analysis, qPCR, and immunoblotting were used to assess gene expression and protein abundance. We found that SCO supplementation of a high-fat diet in mice substantially reduces circulating glycerol and free fatty acid levels, and we observed a cell-autonomous effect of SCO to significantly attenuate tumor necrosis factor-α (TNFα)-induced lipolysis in cultured adipocytes. Although several prolipolytic and antilipolytic genes were identified by microarray analysis of subcutaneous and visceral adipose tissue from SCO-fed mice, regulation of these genes did not consistently correlate with SCO’s ability to reduce lipolytic metabolites in sera or cell culture media. However, in the presence of TNFα in cultured adipocytes, SCO induced antilipolytic changes in phosphorylation of hormone-sensitive lipase and perilipin. Together, these data suggest that the antilipolytic effects of SCO on adipose tissue play a role in the ability of this botanical extract to improve whole body metabolic parameters and support its use as a dietary supplement to promote metabolic resiliency.


2011 ◽  
Vol 300 (1) ◽  
pp. E211-E220 ◽  
Author(s):  
Mikael Bjursell ◽  
Therése Admyre ◽  
Melker Göransson ◽  
Anna E. Marley ◽  
David M. Smith ◽  
...  

Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice ( Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.


2020 ◽  
Vol 318 (3) ◽  
pp. G428-G438
Author(s):  
Thiyagarajan Gopal ◽  
Narendra Kumar ◽  
Curtis Perriotte-Olson ◽  
Carol A. Casey ◽  
Terrence M. Donohue ◽  
...  

Enhanced free fatty acid (FFA) flux from adipose tissue (AT) to liver plays an important role in the development of nonalcoholic steatohepatitis (NASH) and alcohol-associated liver disease (AALD). We determined the effectiveness of nanoformulated superoxide dismutase 1 (Nano) in attenuating liver injury in a mouse model exhibiting a combination of NASH and AALD. Male C57BL6/J mice were fed a chow diet (CD) or a high-fat diet (HF) for 10 wk followed by pair feeding of the Lieber-DeCarli control (control) or ethanol (ET) diet for 4 wk. Nano was administered once every other day for the last 2 wk of ET feeding. Mice were divided into 1) CD + control diet (CD + Cont), 2) high-fat diet (HF) + control diet (HF + Cont), 3) HF + Cont + Nano, 4) HF + ET diet (HF + ET), and 5) HF + ET + Nano. The total fat mass, visceral AT mass (VAT), and VAT perilipin 1 content were significantly lower only in HF + ET-fed mice but not in HF + ET + Nano-treated mice compared with controls. The HF + ET-fed mice showed an upregulation of VAT CYP2E1 protein, and Nano abrogated this effect. We noted a significant rise in plasma FFAs, ALT, and monocyte chemoattractant protein-1 in HF + ET-fed mice, which was blunted in HF + ET + Nano-treated mice. HF + ET-induced increases in hepatic steatosis and inflammatory markers were attenuated upon Nano treatment. Nano reduced hepatic CYP2E1 and enhanced catalase levels in HF + ET-fed mice with a concomitant increase in SOD1 protein and activity in liver. Nano was effective in attenuating AT and liver injury in mice exhibiting a combination of NASH and AALD, partly via reduced CYP2E1-mediated ET metabolism in these organs. NEW & NOTEWORTHY Increased free fatty acid flux from adipose tissue (AT) to liver accompanied by oxidative stress promotes nonalcoholic steatohepatitis (NASH) and alcohol-associated liver injury (AALD). Obesity increases the severity of AALD. Using a two-hit model involving a high-fat diet and chronic ethanol feeding to mice, and treating them with nanoformulated superoxide dismutase (nanoSOD), we have shown that nanoSOD improves AT lipid storage, reduces CYP2E1 in AT and liver, and attenuates the combined NASH/AALD in mice.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2262 ◽  
Author(s):  
Kim ◽  
Jang ◽  
Lee

: Allium hookeri (AH) is widely consumed as a herbal medicine. It possesses biological activity against metabolic diseases. The objective of this study was to investigate effects of AH root water extract (AHR) on adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice. AHR inhibited lipid accumulation during adipocyte differentiation by downregulation of gene expression, such as hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and an adipogenic gene, CCAAT/enhancer binding protein-α in 3T3-L1 preadipocytes. Oral administration of AHR significantly suppressed body weight gain, adipose tissue weight, serum leptin levels, and adipocyte cell size in HFD-induced obese mice. Moreover, AHR significantly decreased hepatic mRNA expression levels of cholesterol synthesis genes, such as 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding transcription factor (SREBP)-2, and low-density lipoprotein receptor, as well as fatty acid synthesis genes, such as SREBP-1c and fatty acid synthase. Serum triglyceride levels were also lowered by AHR, likely as a result of the upregulating gene involved in fatty acid β-oxidation, carnitine palmitoyltransferase 1a, in the liver. AHR treatment activated gene expression of peroxisome proliferator-activated receptor-γ, which might have promoted HSL and LPL-medicated lipolysis, thereby reducing white adipose tissue weight. In conclusion, AHR treatment can improve metabolic alterations induced by HFD in mice by modifying expression levels of genes involved in adipogenesis, lipogenesis, and lipolysis in the white adipose tissue and liver.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 287-LB
Author(s):  
HYE-JIN LEE ◽  
MUN-GYU SONG ◽  
NA-HEE HA ◽  
BO-YEONG JIN ◽  
SANG-HYUN CHOI ◽  
...  

2019 ◽  
Vol 122 (03) ◽  
pp. 241-251
Author(s):  
Siti N. Wulan ◽  
Freek G. Bouwman ◽  
Klaas R. Westerterp ◽  
Edwin C. M. Mariman ◽  
Guy Plasqui

AbstractFor the same BMI, South Asians have a higher body fat percentage than Caucasians. There might be differences in the fatty acid (FA) handling in adipose tissue when both ethnicities are exposed to high-fat overfeeding. The objective of the present study was to investigate the molecular adaptation in relation to FA metabolism in response to overfeeding with a high-fat diet (OHFD) in South Asian and Caucasian men. Ten South Asian men (BMI 18–29 kg/m2) and ten Caucasian men (BMI 22–33 kg/m2), matched for body fat percentage, aged 20–40 years were included. A weight-maintenance diet (30 % fat, 55 % carbohydrate and 15 % protein) was given for 3 d followed by 3 d of overfeeding (150 % energy requirement) with a high-fat diet (60 % fat, 25 % carbohydrate and 15 % protein) while staying in a respiration chamber. Before and after overfeeding, abdominal subcutaneous fat biopsies were taken. Proteins were isolated, analysed and quantified for short-chain 3-hydroxyacyl-CoA dehydrogenase (HADH), carnitine palmitoyl-transferase 1α (CPT1a), adipose TAG lipase, perilipin A (PLINA), perilipin B, lipoprotein lipase and fatty acid binding protein 4 using Western blotting. OHFD decreased the HADH level (P < 0·05) in Caucasians more than in Asians (P < 0·05), but the baseline and after intervention HADH level was relatively higher in Caucasians. The level of CPT1a decreased in South Asians and increased in Caucasians (P < 0·05). PLINA did not change with diet but the level was higher in South Asians (P < 0·05). The observed differences in HADH and PLINA levels as well as in CPT1a response may be important for differences in the long-term regulation of energy (fat) metabolism in these populations.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Yu-Wen Cheng ◽  
Ze-Bei Zhang ◽  
Bei-Di Lan ◽  
Jing-Rong Lin ◽  
Xiao-Hui Chen ◽  
...  

Obesity-induced secretory disorder of adipose tissue–derived factors is important for cardiac damage. However, whether platelet-derived growth factor-D (PDGF-D), a newly identified adipokine, regulates cardiac remodeling in angiotensin II (AngII)–infused obese mice is unclear. Here, we found obesity induced PDGF-D expression in adipose tissue as well as more severe cardiac remodeling compared with control lean mice after AngII infusion. Adipocyte-specific PDGF-D knockout attenuated hypertensive cardiac remodeling in obese mice. Consistently, adipocyte-specific PDGF-D overexpression transgenic mice (PA-Tg) showed exacerbated cardiac remodeling after AngII infusion without high-fat diet treatment. Mechanistic studies indicated that AngII-stimulated macrophages produce urokinase plasminogen activator (uPA) that activates PDGF-D by splicing full-length PDGF-D into the active PDGF-DD. Moreover, bone marrow–specific uPA knockdown decreased active PDGF-DD levels in the heart and improved cardiac remodeling in HFD hypertensive mice. Together, our data provide for the first time a new interaction pattern between macrophage and adipocyte: that macrophage-derived uPA activates adipocyte-secreted PDGF-D, which finally accelerates AngII-induced cardiac remodeling in obese mice.


Sign in / Sign up

Export Citation Format

Share Document