scholarly journals Epistatic interactions shape the interplay between beneficial alleles and gain or loss of pathways in the evolution of novel metabolism

2020 ◽  
Author(s):  
Eric L. Bruger ◽  
Lon M. Chubiz ◽  
José I. Rojas Echenique ◽  
Caleb J. Renshaw ◽  
N. Victoria Espericueta ◽  
...  

AbstractFitness landscapes are often invoked to interpret the effects of allele substitutions and their interactions; however, evolution also includes larger changes like gene loss and acquisition. Previous work with the methylotrophic bacterium Methylorubrum extorquens AM1 identified strongly beneficial mutations in a strain evolved to utilize a novel, Foreign pathway in place of its native central metabolic pathway for growth on methanol. These mutations were consistently beneficial, regardless of the order in which they arose. Here we extend this analysis to consider loss or acquisition of metabolic pathways by examining strains relying upon either the Native pathway, or both (‘Dual’) pathways present. Unlike in the Foreign pathway context in which they evolved, these alleles were often deleterious in these alternative genetic backgrounds, following patterns that were strongly contingent on the specific pathways and other evolved alleles present. Landscapes for these alternative pathway backgrounds altered which genotypes correspond to local fitness peaks and would restrict the set of accessible evolutionary trajectories. These epistatic interactions negatively impact the probability of maintaining multiple degenerate pathways, making it more difficult for these pathways to coevolve. Together, our results highlight the uncertainty of retaining novel functions acquired via horizontal gene transfer (HGT), and that the potential for cells to either adopt novel functions or to maintain degenerate pathways together in a genome is heavily dependent upon the underlying epistatic interactions between them.Author SummaryThe evolution of physiology in microbes has important impacts ranging from global cycling of elements to the emergence and spread of pathogens and their resistance to antibiotics. While genetic interactions between mutations in evolving lineages of microbes have been investigated, these have not included the acquisition of novel genes on elements like plasmids, and thus how these elements interact with existing alleles. The dynamics of novel gene retention are of interest from both positive (e.g., biotechnology) and negative (e.g., antimicrobial resistance) practical impacts. We find that the patterns of interactions between evolved alleles appear substantially different, and generally much less positive, when moved into novel genetic backgrounds. Additionally, these preexisting alleles were found to have strong impacts on the ability of genotypes to maintain – and in rare cases coevolve with – novel genes and pathways. These results show that even though they evolved separately, the particular alleles in a genetic background, and importantly the physiological impacts they confer, weigh heavily on whether genes for novel metabolic processes are maintained.

2020 ◽  
Author(s):  
Phaniendra Alugoju ◽  
Supreet Saini

AbstractThe question of chance vs. determinism in dictating evolutionary trajectories has been a broad question of interest in the last few decades. This question has not been addressed in the context of reverse evolution. By reverse evolution, we mean a scenario where selection is reversed. In this work, we use evolution of multicellularity in S. cerevisiae as a model to answer this question. When selected for fast-settling variants, multicellularity rapidly evolves in the organism. On reversing selection, unicellularity evolves from the multicellular clusters. However, the dynamic trajectories of the two processes are completely different. The molecular determinants dictating the two adaptive processes are also distinct from each other. In this context, evolution is not reversed dynamically or at a molecular level. The phenotypic reversal, however, is driven by epistatic interactions in the genome. How epistatic interactions evolve in a genome and shape evolutionary trajectories remains largely unknown.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

2006 ◽  
Vol 34 (4) ◽  
pp. 560-561 ◽  
Author(s):  
R.A. Watson ◽  
D.M. Weinreich ◽  
J. Wakeley

Whereas spontaneous point mutation operates on nucleotides individually, sexual recombination manipulates the set of nucleotides within an allele as an essentially particulate unit. In principle, these two different scales of variation enable selection to follow fitness gradients in two different spaces: in nucleotide sequence space and allele sequence space respectively. Epistasis for fitness at these two scales, between nucleotides and between genes, may be qualitatively different and may significantly influence the advantage of mutation-based and recombination-based evolutionary trajectories respectively. We examine scenarios where the genetic sequence within a gene strongly influences the fitness effect of a mutation in that gene, whereas epistatic interactions between sites in different genes are weak or absent. We find that, in cases where beneficial alleles of a gene differ from one another at several nucleotide sites, sexual populations can exhibit enormous benefit compared with asexual populations: not only discovering fit genotypes faster than asexual populations, but also discovering high-fitness genotypes that are effectively not evolvable in asexual populations.


2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2008 ◽  
Vol 190 (17) ◽  
pp. 5841-5854 ◽  
Author(s):  
Helen Ting ◽  
Elena A. Kouzminova ◽  
Andrei Kuzminov

ABSTRACT Synthetic lethality is inviability of a double-mutant combination of two fully viable single mutants, commonly interpreted as redundancy at an essential metabolic step. The dut-1 defect in Escherichia coli inactivates dUTPase, causing increased uracil incorporation in DNA and known synthetic lethalities [SL(dut) mutations]. According to the redundancy logic, most of these SL(dut) mutations should affect nucleotide metabolism. After a systematic search for SL(dut) mutants, we did identify a single defect in the DNA precursor metabolism, inactivating thymidine kinase (tdk), that confirmed the redundancy explanation of synthetic lethality. However, we found that the bulk of mutations interacting genetically with dut are in DNA repair, revealing layers of damage of increasing complexity that uracil-DNA incorporation sends through the chromosomal metabolism. Thus, we isolated mutants in functions involved in (i) uracil-DNA excision (ung, polA, and xthA); (ii) double-strand DNA break repair (recA, recBC, and ruvABC); and (iii) chromosomal-dimer resolution (xerC, xerD, and ftsK). These mutants in various DNA repair transactions cannot be redundant with dUTPase and instead reveal “defect-damage-repair” cycles linking unrelated metabolic pathways. In addition, two SL(dut) inserts (phoU and degP) identify functions that could act to support the weakened activity of the Dut-1 mutant enzyme, suggesting the “compensation” explanation for this synthetic lethality. We conclude that genetic interactions with dut can be explained by redundancy, by defect-damage-repair cycles, or as compensation.


2010 ◽  
Vol 20 (8) ◽  
pp. 1122-1132 ◽  
Author(s):  
A. Lin ◽  
R. T. Wang ◽  
S. Ahn ◽  
C. C. Park ◽  
D. J. Smith

2020 ◽  
Vol 70 (8) ◽  
pp. 4646-4652 ◽  
Author(s):  
Nadezhda V. Agafonova ◽  
Elena N. Kaparullina ◽  
Denis S. Grouzdev ◽  
Nina V. Doronina

Novel aerobic, restricted facultatively methylotrophic bacteria were isolated from buds of English oak (Quercus robur L.; strain DubT) and northern red oak (Quercus rubra L.; strain KrD). The isolates were Gram-negative, asporogenous, motile short rods that multiplied by binary fisson. They utilized methanol, methylamine and a few polycarbon compounds as carbon and energy sources. Optimal growth occurred at 25 °C and pH 7.5. The dominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and phoshatidylglycerol. The major cellular fatty acids of cells were C18 : 1 ω7c, 11-methyl C18 : 1 ω7c and C16 : 0. The major ubiquinone was Q-10. Analysis of 16S rRNA gene sequences showed that the strains were closely related to the members of the genus Hansschlegelia : Hansschlegelia zhihuaiae S113T(97.5–98.0 %), Hansschlegelia plantiphila S1T (97.4–97.6 %) and Hansschlegelia beijingensis PG04T(97.0–97.2 %). The 16S rRNA gene sequence similarity between strains DubT and KrD was 99.7 %, and the DNA–DNA hybridization (DDH) result between the strains was 85 %. The ANI and the DDH values between strain DubT and H. zhihuaiae S113T were 80.1 and 21.5  %, respectively. Genome sequencing of the strain DubT revealed a genome size of 3.57 Mbp and a G+C content of 67.0 mol%. Based on the results of the phenotypic, chemotaxonomic and genotypic analyses, it is proposed that the isolates be assigned to the genus Hansschlegelia as Hansschlegelia quercus sp. nov. with the type strain DubT (=VKM B-3284T=CCUG 73648T=JCM 33463T).


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 272 ◽  
Author(s):  
Zhiqian Yi ◽  
Yixi Su ◽  
Maonian Xu ◽  
Andreas Bergmann ◽  
Saevar Ingthorsson ◽  
...  

Diatoms are a major group of unicellular algae that are rich in lipids and carotenoids. However, sustained research efforts are needed to improve the strain performance for high product yields towards commercialization. In this study, we generated a number of mutants of the model diatom Phaeodactylum tricornutum, a cosmopolitan species that has also been found in Nordic region, using the chemical mutagens ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (NTG). We found that both chlorophyll a and neutral lipids had a significant correlation with carotenoid content and these correlations were better during exponential growth than in the stationary growth phase. Then, we studied P. tricornutum common metabolic pathways and analyzed correlated enzymatic reactions between fucoxanthin synthesis and pigmentation or lipid metabolism through a genome-scale metabolic model. The integration of the computational results with liquid chromatography-mass spectrometry data revealed key compounds underlying the correlative metabolic pathways. Approximately 1000 strains were screened using fluorescence-based high-throughput method and five mutants selected had 33% or higher total carotenoids than the wild type, in which four strains remained stable in the long term and the top mutant exhibited an increase of 69.3% in fucoxanthin content compared to the wild type. The platform described in this study may be applied to the screening of other high performing diatom strains for industrial applications.


2019 ◽  
Vol 36 (10) ◽  
pp. 2238-2251 ◽  
Author(s):  
Sara Hernando-Amado ◽  
Fernando Sanz-García ◽  
José Luis Martínez

Abstract Different works have explored independently the evolution toward antibiotic resistance and the role of eco-adaptive mutations in the adaptation to a new habitat (as the infected host) of bacterial pathogens. However, knowledge about the connection between both processes is still limited. We address this issue by comparing the evolutionary trajectories toward antibiotic resistance of a Pseudomonas aeruginosa lasR defective mutant and its parental wild-type strain, when growing in presence of two ribosome-targeting antibiotics. Quorum-sensing lasR defective mutants are selected in P. aeruginosa populations causing chronic infections. Further, we observed they are also selected in vitro as a first adaptation for growing in culture medium. By using experimental evolution and whole-genome sequencing, we found that the evolutionary trajectories of P. aeruginosa in presence of these antibiotics are different in lasR defective and in wild-type backgrounds, both at the phenotypic and the genotypic levels. Recreation of a set of mutants in both genomic backgrounds (either wild type or lasR defective) allowed us to determine the existence of negative epistatic interactions between lasR and antibiotic resistance determinants. These epistatic interactions could lead to mutual contingency in the evolution of antibiotic resistance when P. aeruginosa colonizes a new habitat in presence of antibiotics. If lasR mutants are selected first, this would constraint antibiotic resistance evolution. Conversely, when resistance mutations (at least those studied in the present work) are selected, lasR mutants may not be selected in presence of antibiotics. These results underlie the importance of contingency and epistatic interactions in modulating antibiotic resistance evolution.


2014 ◽  
Vol 88 (14) ◽  
pp. 7843-7851 ◽  
Author(s):  
Adérito L. Monjane ◽  
Darren P. Martin ◽  
Francisco Lakay ◽  
Brejnev M. Muhire ◽  
Daniel Pande ◽  
...  

ABSTRACTAlthough homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own “lethally recombinant.” Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains.IMPORTANCERecombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Sign in / Sign up

Export Citation Format

Share Document