scholarly journals Retrograde suppression of post-tetanic potentiation at the mossy fiber-CA3 pyramidal cell synapse

2020 ◽  
Author(s):  
Sachin Makani ◽  
Stefano Lutzu ◽  
Pablo J. Lituma ◽  
David L. Hunt ◽  
Pablo E. Castillo

ABSTRACTIn the hippocampus, the excitatory synapse between dentate granule cell axons – or mossy fibers (MF) – and CA3 pyramidal cells (MF-CA3) expresses robust forms of short-term plasticity, such as frequency facilitation and post-tetanic potentiation (PTP). These forms of plasticity are due to increases in neurotransmitter release, and can be engaged when dentate granule cells fire in bursts (e.g. during exploratory behaviors) and bring CA3 pyramidal neurons above threshold. While frequency facilitation at this synapse is limited by endogenous activation of presynaptic metabotropic glutamate receptors, whether MF-PTP can be regulated in an activity-dependent manner is unknown. Here, using physiologically relevant patterns of mossy fiber stimulation in acute mouse hippocampal slices, we found that disrupting postsynaptic Ca2+ dynamics increases MF-PTP, strongly suggesting a form of Ca2+-dependent retrograde suppression of this form of plasticity. PTP suppression requires a few seconds of MF bursting activity and Ca2+ release from internal stores. Our findings raise the possibility that the powerful MF-CA3 synapse can negatively regulate its own strength not only during PTP-inducing activity typical of normal exploratory behaviors, but also during epileptic activity.SIGNIFICANCE STATEMENTThe powerful mossy fiber-CA3 synapse exhibits strong forms of plasticity that are engaged during location-specific exploration, when dentate granule cells fire in bursts. While this synapse is well-known for its presynaptically-expressed LTP and LTD, much less is known about the robust changes that occur on a shorter time scale. How such short-term plasticity is regulated, in particular, remains poorly understood. Unexpectedly, an in vivo-like pattern of presynaptic activity induced robust post-tetanic potentiation (PTP) only when the postsynaptic cell was loaded with a high concentration of Ca2+ buffer, indicating a form of Ca2+–dependent retrograde suppression of PTP. Such suppression may have profound implications for how environmental cues are encoded into neural assemblies, and for limiting network hyperexcitability during seizures.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nicholas P Vyleta ◽  
Carolina Borges-Merjane ◽  
Peter Jonas

Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network.


2018 ◽  
Author(s):  
William D. Hendricks ◽  
Gary L. Westbrook ◽  
Eric Schnell

AbstractIn temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an “early detonation” mode and an increased probability of release compared to mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release thus facilitating reverberant circuit activity.Significance StatementSprouted mossy fibers are one of the hallmark histopathological findings in temporal lobe epilepsy. These fibers form recurrent excitatory synapses onto other dentate granule cells that display profound short-term depression. Here, however, we show that although these sprouted mossy fibers weaken substantially during repetitive activation, their initial high probability of glutamate release can activate reverberant network activity. Furthermore, we find that a lack of tonic adenosine inhibition enables this high probability of release and, consequently, recurrent network activity.


2010 ◽  
Vol 103 (3) ◽  
pp. 1490-1500 ◽  
Author(s):  
Robert F. Hunt ◽  
Stephen W. Scheff ◽  
Bret N. Smith

Posttraumatic epilepsy is a frequent consequence of brain trauma, but relatively little is known about how neuronal circuits are chronically altered after closed head injury. We examined whether local recurrent excitatory synaptic connections form between dentate granule cells in mice 8–12 wk after cortical contusion injury. Mice were monitored for behavioral seizures shortly after brain injury and ≤10 wk postinjury. Injury-induced seizures were observed in 15% of mice, and spontaneous seizures were observed weeks later in 40% of mice. Timm's staining revealed mossy fiber sprouting into the inner molecular layer of the dorsal dentate gyrus ipsilateral to the injury in 95% of mice but not contralateral to the injury or in uninjured controls. Whole cell patch-clamp recordings were made from granule cells in isolated hippocampal brain slices. Cells in slices with posttraumatic mossy fiber sprouting had an increased excitatory postsynaptic current (EPSC) frequency compared with cells in slices without sprouting from injured and control animals ( P < 0.001). When perfused with Mg2+-free artificial cerebrospinal fluid containing 100 μM picrotoxin, these cells had spontaneous bursts of EPSCs and action potentials. Focal glutamate photostimulation of the granule cell layer evoked a burst of EPSCs and action potentials indicative of recurrent excitatory connections in granule cells of slices with mossy fiber sprouting. In granule cells of slices without sprouting from injured animals and controls, spontaneous or photostimulation-evoked epileptiform activity was never observed. These results suggest that a new regionally localized excitatory network forms between dentate granule cells near the injury site within weeks after cortical contusion head injury.


2001 ◽  
Vol 85 (6) ◽  
pp. 2509-2515 ◽  
Author(s):  
John Kilbride ◽  
Anthony M. Rush ◽  
Michael J. Rowan ◽  
Roger Anwyl

Inhibition of short-term plasticity by activation of presynaptic group II metabotropic glutamate receptors (group II mGluR) was investigated in the medial perforant path of the dentate gyrus in the hippocampus in vitro. Brief trains of stimulation (10 stimuli at 1–200 Hz) evoked short-term depression of field excitatory postsynaptic potentials (EPSPs). The steady-state level of depression, measured after 10 stimuli, was frequency dependent, increasing between 1 and 200 Hz. Activation of group II mGluR by the selective agonist LY354740 did not alter short-term depression evoked by frequencies up to 10 Hz, but did inhibit short-term depression evoked at higher frequencies in a frequency- and concentration-dependent manner. The time-averaged postsynaptic response (EPSP per unit time) was found to increase linearly with frequency up to ∼20 Hz. At higher frequencies, the response plateaued, thereby becoming independent of frequency. Frequencies above this were differentiated only during the transient postsynaptic response that accompanies changes in firing rates. Activation of presynaptically located group II mGluR increased the frequency at which the EPSP per unit time plateaued up to 30–50 Hz.


2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


Sign in / Sign up

Export Citation Format

Share Document