scholarly journals Evolution of Natural Lifespan Variation and Molecular Strategies of Extended Lifespan

2020 ◽  
Author(s):  
Alaattin Kaya ◽  
Cheryl Zi Jin Phua ◽  
Mitchell Lee ◽  
Lu Wang ◽  
Alexander Tyshkovskiy ◽  
...  

ABSTRACTThe question of why and how some species or individuals within a population live longer than others is among the most important questions in the biology of aging. A particularly useful model to understand the genetic basis and selective forces acting on the plasticity of lifespan are closely related species or ecologically diverse individuals of the same species widely different in lifespan. Here, we analyzed 76 diverse wild isolates of two closely related budding yeast species Saccharomyces cerevisiae and Saccharomyces paradoxus and discovered a diversity of natural intra-species lifespan variation. We sequenced the genomes of these organisms and analyzed how their replicative lifespan is shaped by nutrients and transcriptional and metabolite patterns. We identified sets of genes and metabolites to regulate aging pathways, many of which have not been previously associated with lifespan regulation. We also identified and characterized long-lived strains with elevated intermediary metabolites and differentially regulated genes for NAD metabolism and the control of epigenetic landscape through chromatin silencing. Our data further offer insights into the evolution and mechanisms by which caloric restriction regulates lifespan by modulating the availability of nutrients without decreasing fitness. Overall, our study shows how the environment and natural selection interact to shape diversity of lifespan.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 32-33
Author(s):  
Alaattin Kaya

Abstract To understand the genetic basis and the selective forces acting on longevity, it is useful to employ ecologically diverse individuals of the same species, widely different in lifespan. This way, we may capture the experiment of Nature that modifies the genotype arriving at different lifespans. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered wide diversity of lifespan. We sequenced the genomes of these organisms and analyzed how their replicative lifespan is shaped by nutrients and transcriptional and metabolite patterns. By identifying genes, proteins and metabolites that correlate with longevity across these isolates, we found that long-lived strains elevate intermediary metabolites, differentially regulate genes involved in NAD metabolism and adjust control of epigenetic landscape through conserved, rare histone modifier. Our data further offer insights into the evolution and mechanisms by which caloric restriction regulates lifespan by modulating the availability of nutrients without decreasing fitness.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alaattin Kaya ◽  
Cheryl Zi Jin Phua ◽  
Mitchell Lee ◽  
Lu Wang ◽  
Alexander Tyshkovskiy ◽  
...  

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.


2004 ◽  
Vol 83 (2) ◽  
pp. 83-89 ◽  
Author(s):  
MUNEO MATSUDA ◽  
YOSHIKO N. TOBARI

Parthenogenetic strains of several species have been found in the genus Drosophila. The mode of diploidization in the eggs of females has been found to be post-meiotic nuclear fusion. The genetic basis for this parthenogenesis is not understood but is believed to be under the control of a complex polygenic system. We found parthenogenetic females in an isofemale strain (LAE345) of D. pallidosa-like collected in 1981 at Lae, Papua New Guinea, and established a parthenogenetically reproducing strain. Parthenogenetic strains of D. ananassae and D. pallidosa collected at Taputimu, American Samoa had also been established by Futch (1972). D. ananassae, D. pallidosa and D. pallidosa-like are very closely related species belonging to the ananassae complex of the ananassae species subgroup of the melanogaster species group. Using these three species, we found that more than 80% of females from parthenogenetic strains produced progeny parthenogenetically and that inter-specific hybrid females also produced impaternate progeny. In the present report, we demonstrate that the mode of parthenogenesis of D. ananassae appears to be the post-meiotic nuclear doubling of a single meiotic product, and that a major gene responsible for the parthenogenesis maps to the left arm of the second chromosome of D. ananassae. We also suggest that the genetic basis for parthenogenesis capacity may be identical among the three closely related species. We discuss the function of the gene required for parthenogenesis and its significance for the evolutionary process.


2021 ◽  
Author(s):  
Fernando Diaz ◽  
Allan W. Carson ◽  
Xingsen Chen ◽  
Joshua M. Coleman ◽  
Jeremy M. Bono ◽  
...  

Postmating-prezygotic (PMPZ) reproductive isolation is hypothesized to result from divergent coevolutionary trajectories of sexual selection and/or sexual conflict in isolated populations (coevolutionary divergence model). However, the genetic basis of PMPZ incompatibilities between species is poorly understood. Here, we use a comparative framework to test predictions of the coevolutionary divergence model using a large transcriptomic dataset generated from con- and heterospecifically mated Drosophila mojavensis and D. arizonae female reproductive tracts. We found striking divergence between the species in the female postmating transcriptional response to conspecific mating, including differences in differential expression (DE), alternative splicing (AS), and intron retention (IR). As predicted, heterospecific matings produced disrupted transcriptional profiles, but the overall patterns of misregulation were different between the reciprocal crosses. Moreover, we found a positive correlation between postmating transcriptional divergence between species and levels of transcriptional disruption in heterospecific crosses, indicating that mating-responsive genes that have diverged more in expression also have more disrupted transcriptional profiles in heterospecifically mated females. Overall, our results are consistent with predictions of the coevolutionary divergence model and lay the foundation for future studies aimed at identifying specific genes involved in PMPZ incompatibilities and the evolutionary forces that have contributed to their divergence in closely related species.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Marie Monniaux ◽  
Bjorn Pieper ◽  
Sarah M McKim ◽  
Anne-Lise Routier-Kierzkowska ◽  
Daniel Kierzkowski ◽  
...  

Invariant floral forms are important for reproductive success and robust to natural perturbations. Petal number, for example, is invariant in Arabidopsis thaliana flowers. However, petal number varies in the closely related species Cardamine hirsuta, and the genetic basis for this difference between species is unknown. Here we show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness. This large effect of AP1 is explained by epistatic interactions: A. thaliana AP1 confers robustness by masking the phenotypic expression of quantitative trait loci controlling petal number in C. hirsuta. We show that C. hirsuta AP1 fails to complement this function of A. thaliana AP1, conferring variable petal number, and that upstream regulatory regions of AP1 contribute to this divergence. Moreover, variable petal number is maintained in C. hirsuta despite sufficient standing genetic variation in natural accessions to produce plants with four-petalled flowers.


2019 ◽  
Vol 37 (3) ◽  
pp. 864-880
Author(s):  
Alison Pischedda ◽  
Michael P Shahandeh ◽  
Thomas L Turner

Abstract The behaviors of closely related species can be remarkably different, and these differences have important ecological and evolutionary consequences. Although the recent boom in genotype–phenotype studies has led to a greater understanding of the genetic architecture and evolution of a variety of traits, studies identifying the genetic basis of behaviors are, comparatively, still lacking. This is likely because they are complex and environmentally sensitive phenotypes, making them difficult to measure reliably for association studies. The Drosophila species complex holds promise for addressing these challenges, as the behaviors of closely related species can be readily assayed in a common environment. Here, we investigate the genetic basis of an evolved behavioral difference, pupation site choice, between Drosophila melanogaster and D. simulans. In this study, we demonstrate a significant contribution of the X chromosome to the difference in pupation site choice behavior between these species. Using a panel of X-chromosome deficiencies, we screened the majority of the X chromosome for causal loci and identified two regions associated with this X-effect. We then collect gene disruption and RNAi data supporting a single gene that affects pupation behavior within each region: Fas2 and tilB. Finally, we show that differences in tilB expression correlate with the differences in pupation site choice behavior between species. This evidence associating two genes with differences in a complex, environmentally sensitive behavior represents the first step toward a functional and evolutionary understanding of this behavioral divergence.


GeroScience ◽  
2021 ◽  
Author(s):  
Lucas Paulo de Lima Camillo ◽  
Robert B. A. Quinlan

AbstractAging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1027
Author(s):  
Dong In Kim ◽  
Wataru Kai ◽  
Sho Hosoya ◽  
Mana Sato ◽  
Aoi Nozawa ◽  
...  

Rapid radiation associated with phenotypic divergence and convergence provides an opportunity to study the genetic mechanisms of evolution. Here we investigate the genus Takifugu that has undergone explosive radiation relatively recently and contains a subset of closely-related species with a scale-loss phenotype. By using observations during development and genetic mapping approaches, we show that the scale-loss phenotype of two Takifugu species, T. pardalis Temminck & Schlegel and T. snyderi Abe, is largely controlled by an overlapping genomic segment (QTL). A search for candidate genes underlying the scale-loss phenotype revealed that the QTL region contains no known genes responsible for the evolution of scale-loss phenotype in other fishes. These results suggest that the genes used for the scale-loss phenotypes in the two Takifugu are likely the same, but the genes used for the similar phenotype in Takifugu and distantly related fishes are not the same. Meanwhile, Fgfrl1, a gene predicted to function in a pathway known to regulate bone/scale development was identified in the QTL region. Since Fgfr1a1, another memebr of the Fgf signaling pathway, has been implicated in scale loss/scale shape in fish distantly related to Takifugu, our results suggest that the convergence of the scale-loss phenotype may be constrained by signaling modules with conserved roles in scale development.


Sign in / Sign up

Export Citation Format

Share Document