scholarly journals Non-stimulated regions in early visual cortex encode the contents of conscious visual perception

2020 ◽  
Author(s):  
Bianca M. van Kemenade ◽  
Gregor Wilbertz ◽  
Annalena Müller ◽  
Philipp Sterzer

AbstractPredictions shape our perception. The theory of predictive processing poses that our brains make sense of incoming sensory input by generating predictions, which are sent back from higher to lower levels of the processing hierarchy. These predictions are based on our internal model of the world and enable inferences about the hidden causes of the sensory input data. It has been proposed that conscious perception corresponds to the currently most probable internal model of the world. Accordingly, predictions influencing conscious perception should be fed back from higher to lower levels of the processing hierarchy. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to show that non-stimulated regions of early visual areas contain information about the conscious perception of an ambiguous visual stimulus. These results indicate that early sensory cortices in the human brain receive predictive feedback signals that reflect the current contents of conscious perception.

2019 ◽  
pp. 191-205 ◽  
Author(s):  
Jakob Hohwy

Andy Clark’s exciting work on predictive processing provides the umbrella under which his hugely influential previous work on embodied and extended cognition seeks a unified home. This chapter argues that in fact predictive processing harbours internalist, inferentialist and epistemic tenets that cannot leave embodied and extended cognition unchanged. Predictive processing cannot do the work Clark requires of it without relying on rich, preconstructive internal representations of the world, nor without engaging in paradigmatically rational integration of prior knowledge and new sensory input. Hence, next to Clark’s image of fluid “uncertainty surfing” is an equally valid image of more emaciated and plodding world-modelling. Rather than underpinning orthodox embodied and extended approches, predictive processing therefore presents an opportunity for a potentially fruitful new synthesis of cognitivist and embodied approaches to cognition.


2020 ◽  
Author(s):  
Lina Skora ◽  
Anil Seth ◽  
Ryan Bradley Scott

Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions – that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression (b-CFS) task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the b-CFS task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lina I Skora ◽  
Anil K Seth ◽  
Ryan B Scott

Abstract Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions—that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the breaking continuous flash suppression task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.


Author(s):  
Lauren Swiney

Over the last thirty years the comparator hypothesis has emerged as a prominent account of inner speech pathology. This chapter discusses a number of cognitive accounts broadly derived from this approach, highlighting the existence of two importantly distinct notions of inner speech in the literature; one as a prediction in the absence of sensory input, the other as an act with sensory consequences that are themselves predicted. Under earlier frameworks in which inner speech is described in the context of classic models of motor control, I argue that these two notions may be compatible, providing two routes to inner speech pathology. Under more recent accounts grounded in the architecture of Bayesian predictive processing, I argue that “active inference” approaches to action generation pose serious challenges to the plausibility of the latter notion of inner speech, while providing the former notion with rich explanatory possibilities for inner speech pathology.


Author(s):  
Mark Grimshaw-Aagaard

Mark Grimshaw-Aagaard addresses the role of sound in the creation of presence in virtual and actual worlds. He argues that imagination is a central part of the generation and selection of perceptual hypotheses—models of the world in which we can act—that emerge from what Grimshaw-Aagaard calls the “exo-environment” (the sensory input) and the “endo-environment” (the cognitive input). Grimshaw-Aagaard further divides the exo-environment into a primarily auditory and a primarily visual dimension and he deals with the actual world of his own apartment and the virtual world of first-person-shooter computer games in order to exemplify how we perceptually construct an environment that allows for the creation of presence.


Author(s):  
James Deery

AbstractFor some, the states and processes involved in the realisation of phenomenal consciousness are not confined to within the organismic boundaries of the experiencing subject. Instead, the sub-personal basis of perceptual experience can, and does, extend beyond the brain and body to implicate environmental elements through one’s interaction with the world. These claims are met by proponents of predictive processing, who propose that perception and imagination should be understood as a product of the same internal mechanisms. On this view, as visually imagining is not considered to be world-involving, it is assumed that world-involvement must not be essential for perception, and thus internalism about the sub-personal basis is true. However, the argument for internalism from the unity of perception and imagination relies for its strength on a questionable conception of the relationship between the two experiential states. I argue that proponents of the predictive approach are guilty of harbouring an implicit commitment to the common kind assumption which does not follow trivially from their framework. That is, the assumption that perception and imagination are of the same fundamental kind of mental event. I will argue that there are plausible alternative ways of conceiving of this relationship without drawing internalist metaphysical conclusions from their psychological theory. Thus, the internalist owes the debate clarification of this relationship and further argumentation to secure their position.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joerg Fingerhut

This paper argues that the still-emerging paradigm of situated cognition requires a more systematic perspective on media to capture the enculturation of the human mind. By virtue of being media, cultural artifacts present central experiential models of the world for our embodied minds to latch onto. The paper identifies references to external media within embodied, extended, enactive, and predictive approaches to cognition, which remain underdeveloped in terms of the profound impact that media have on our mind. To grasp this impact, I propose an enactive account of media that is based on expansive habits as media-structured, embodied ways of bringing forth meaning and new domains of values. We apply such habits, for instance, when seeing a picture or perceiving a movie. They become established through a process of reciprocal adaptation between media artifacts and organisms and define the range of viable actions within such a media ecology. Within an artifactual habit, we then become attuned to a specific media work (e.g., a TV series, a picture, a text, or even a city) that engages us. Both the plurality of habits and the dynamical adjustments within a habit require a more flexible neural architecture than is addressed by classical cognitive neuroscience. To detail how neural and media processes interlock, I will introduce the concept of neuromediality and discuss radical predictive processing accounts that could contribute to the externalization of the mind by treating media themselves as generative models of the world. After a short primer on general media theory, I discuss media examples in three domains: pictures and moving images; digital media; architecture and the built environment. This discussion demonstrates the need for a new cognitive media theory based on enactive artifactual habits—one that will help us gain perspective on the continuous re-mediation of our mind.


2018 ◽  
Author(s):  
Andreea Lazar ◽  
Chris Lewis ◽  
Pascal Fries ◽  
Wolf Singer ◽  
Danko Nikolić

SummarySensory exposure alters the response properties of individual neurons in primary sensory cortices. However, it remains unclear how these changes affect stimulus encoding by populations of sensory cells. Here, recording from populations of neurons in cat primary visual cortex, we demonstrate that visual exposure enhances stimulus encoding and discrimination. We find that repeated presentation of brief, high-contrast shapes results in a stereotyped, biphasic population response consisting of a short-latency transient, followed by a late and extended period of reverberatory activity. Visual exposure selectively improves the stimulus specificity of the reverberatory activity, by increasing the magnitude and decreasing the trial-to-trial variability of the neuronal response. Critically, this improved stimulus encoding is distributed across the population and depends on precise temporal coordination. Our findings provide evidence for the existence of an exposure-driven optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.


Sign in / Sign up

Export Citation Format

Share Document