scholarly journals Sensorimotor predictions shape reported conscious visual experience in a breaking continuous flash suppression task

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lina I Skora ◽  
Anil K Seth ◽  
Ryan B Scott

Abstract Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions—that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the breaking continuous flash suppression task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.

2020 ◽  
Author(s):  
Lina Skora ◽  
Anil Seth ◽  
Ryan Bradley Scott

Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions – that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression (b-CFS) task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the b-CFS task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.


2020 ◽  
Author(s):  
Bianca M. van Kemenade ◽  
Gregor Wilbertz ◽  
Annalena Müller ◽  
Philipp Sterzer

AbstractPredictions shape our perception. The theory of predictive processing poses that our brains make sense of incoming sensory input by generating predictions, which are sent back from higher to lower levels of the processing hierarchy. These predictions are based on our internal model of the world and enable inferences about the hidden causes of the sensory input data. It has been proposed that conscious perception corresponds to the currently most probable internal model of the world. Accordingly, predictions influencing conscious perception should be fed back from higher to lower levels of the processing hierarchy. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to show that non-stimulated regions of early visual areas contain information about the conscious perception of an ambiguous visual stimulus. These results indicate that early sensory cortices in the human brain receive predictive feedback signals that reflect the current contents of conscious perception.


Author(s):  
Kathryn Nave

AbstractAmong the exciting prospects raised by advocates of predictive processing [PP] is the offer of a systematic description of our neural activity suitable for drawing explanatory bridges to the structure of conscious experience (Clark, 2015). Yet the gulf to cross seems wide. For, as critics of PP have argued, our visual experience certainly doesn’t seem probabilistic (Block, 2018; Holton, 2016).While Clark (2018) proposes a means to make PP compatible with the experience of a determinate world, I argue that we should not rush to do so. Two notions of determinacy are conflated in the claim that perception is determinate: ‘univocality’ and ‘full detail’. The former, as Clark argues, is only to be expected in any PP agent that (like us) models its world for the purpose of acting on it. But as Husserl argued, and as perceptual psychology has borne out, we significantly overestimate the degree of detail with which we perceive a univocal world.This second form of indeterminacy is due not to the probabilistic nature of PP’s model, but rather to its hierarchical structure, with increasingly coarse-grained representations as we move further from the sensory periphery. A PP system may, or may not, deliver a univocal hypothesis at each of these levels. An action-oriented PP system would only be expected to do so only at the level needed for successful action guidance. A naïve reporter’s overestimation of the degree of determinate detail in their visual experience can thereby be accounted for with a more gradual version of the ‘refrigerator light’ effect: we experience determinate details just to the degree that they’re needed – immediately as they’re needed.


2020 ◽  
Author(s):  
Alexander Maier ◽  
Naotsugu Tsuchiya

Our conscious experience of the world seems to go in lockstep with our attentional focus: we tend to see, hear, taste and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.


Author(s):  
James Deery

AbstractFor some, the states and processes involved in the realisation of phenomenal consciousness are not confined to within the organismic boundaries of the experiencing subject. Instead, the sub-personal basis of perceptual experience can, and does, extend beyond the brain and body to implicate environmental elements through one’s interaction with the world. These claims are met by proponents of predictive processing, who propose that perception and imagination should be understood as a product of the same internal mechanisms. On this view, as visually imagining is not considered to be world-involving, it is assumed that world-involvement must not be essential for perception, and thus internalism about the sub-personal basis is true. However, the argument for internalism from the unity of perception and imagination relies for its strength on a questionable conception of the relationship between the two experiential states. I argue that proponents of the predictive approach are guilty of harbouring an implicit commitment to the common kind assumption which does not follow trivially from their framework. That is, the assumption that perception and imagination are of the same fundamental kind of mental event. I will argue that there are plausible alternative ways of conceiving of this relationship without drawing internalist metaphysical conclusions from their psychological theory. Thus, the internalist owes the debate clarification of this relationship and further argumentation to secure their position.


2021 ◽  
pp. 096372142199033
Author(s):  
Katherine R. Storrs ◽  
Roland W. Fleming

One of the deepest insights in neuroscience is that sensory encoding should take advantage of statistical regularities. Humans’ visual experience contains many redundancies: Scenes mostly stay the same from moment to moment, and nearby image locations usually have similar colors. A visual system that knows which regularities shape natural images can exploit them to encode scenes compactly or guess what will happen next. Although these principles have been appreciated for more than 60 years, until recently it has been possible to convert them into explicit models only for the earliest stages of visual processing. But recent advances in unsupervised deep learning have changed that. Neural networks can be taught to compress images or make predictions in space or time. In the process, they learn the statistical regularities that structure images, which in turn often reflect physical objects and processes in the outside world. The astonishing accomplishments of unsupervised deep learning reaffirm the importance of learning statistical regularities for sensory coding and provide a coherent framework for how knowledge of the outside world gets into visual cortex.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joerg Fingerhut

This paper argues that the still-emerging paradigm of situated cognition requires a more systematic perspective on media to capture the enculturation of the human mind. By virtue of being media, cultural artifacts present central experiential models of the world for our embodied minds to latch onto. The paper identifies references to external media within embodied, extended, enactive, and predictive approaches to cognition, which remain underdeveloped in terms of the profound impact that media have on our mind. To grasp this impact, I propose an enactive account of media that is based on expansive habits as media-structured, embodied ways of bringing forth meaning and new domains of values. We apply such habits, for instance, when seeing a picture or perceiving a movie. They become established through a process of reciprocal adaptation between media artifacts and organisms and define the range of viable actions within such a media ecology. Within an artifactual habit, we then become attuned to a specific media work (e.g., a TV series, a picture, a text, or even a city) that engages us. Both the plurality of habits and the dynamical adjustments within a habit require a more flexible neural architecture than is addressed by classical cognitive neuroscience. To detail how neural and media processes interlock, I will introduce the concept of neuromediality and discuss radical predictive processing accounts that could contribute to the externalization of the mind by treating media themselves as generative models of the world. After a short primer on general media theory, I discuss media examples in three domains: pictures and moving images; digital media; architecture and the built environment. This discussion demonstrates the need for a new cognitive media theory based on enactive artifactual habits—one that will help us gain perspective on the continuous re-mediation of our mind.


2019 ◽  
Author(s):  
Georg Schauer ◽  
Carolina Yuri Ogawa ◽  
Naotsugu Tsuchiya ◽  
Andreas Bartels

AbstractThe content of conscious perception is known to correlate with steady-state responses (SSRs), yet their causal relationship remains unclear. Can we manipulate conscious perception by directly interfering with SSRs through transcranial alternating current stimulation (tACS)? Here, we directly addressed this question in three experiments involving binocular rivalry and continuous flash suppression (CFS). Specifically, while participants (N=24) viewed either binocular rivalry or tried to detect stimuli masked by CFS, we applied sham or real tACS across parieto-occipital cortex at either the same or a different frequency and phase as an SSR eliciting flicker stimulus. We found that tACS did not differentially affect conscious perception in the forms of predominance, CFS detection accuracy, reaction time, or metacognitive sensitivity, confirmed by Bayesian statistics. We conclude that tACS application at frequencies of stimulus-induced SSRs does not have perceptual effects and that SSRs may be epiphenomenal to conscious perception.


2020 ◽  
Vol 16 (1) ◽  
pp. 5-32
Author(s):  
Işık Sarıhan

Pure representationalism or intentionalism for phenomenal experience is the theory that all introspectible qualitative aspects of a conscious experience can be analyzed as qualities that the experience non-conceptually represents the world to have. Some philosophers have argued that experiences such as afterimages, phosphenes and double vision are counterexamples to the representationalist theory, claiming that they are non- representational states or have non-representational aspects, and they are better explained in a qualia-theoretical framework. I argue that these states are fully representational states of a certain kind, which I call “automatically non-endorsed representations”, experiential states the veridicality of which we are almost never committed to, and which do not trigger explicit belief or disbelief in the mind of the subject. By investigating descriptive accounts of afterimages by two qualia theorists, I speculate that the mistaken claims of some anti-representationalists might be rooted in confusing two senses of the term “seeming”.


Author(s):  
A. Greenhouse-Tucknott ◽  
J. B. Butterworth ◽  
J. G. Wrightson ◽  
N. J. Smeeton ◽  
H. D. Critchley ◽  
...  

AbstractFatigue is a common experience in both health and disease. Yet, pathological (i.e., prolonged or chronic) and transient (i.e., exertional) fatigue symptoms are traditionally considered distinct, compounding a separation between interested research fields within the study of fatigue. Within the clinical neurosciences, nascent frameworks position pathological fatigue as a product of inference derived through hierarchical predictive processing. The metacognitive theory of dyshomeostasis (Stephan et al., 2016) states that pathological fatigue emerges from the metacognitive mechanism in which the detection of persistent mismatches between prior interoceptive predictions and ascending sensory evidence (i.e., prediction error) signals low evidence for internal generative models, which undermine an agent’s feeling of mastery over the body and is thus experienced phenomenologically as fatigue. Although acute, transient subjective symptoms of exertional fatigue have also been associated with increasing interoceptive prediction error, the dynamic computations that underlie its development have not been clearly defined. Here, drawing on the metacognitive theory of dyshomeostasis, we extend this account to offer an explicit description of the development of fatigue during extended periods of (physical) exertion. Accordingly, it is proposed that a loss of certainty or confidence in control predictions in response to persistent detection of prediction error features as a common foundation for the conscious experience of both pathological and nonpathological fatigue.


Sign in / Sign up

Export Citation Format

Share Document