scholarly journals Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease

2020 ◽  
Author(s):  
Konstantinos-Dionysios Alysandratos ◽  
Scott J. Russo ◽  
Anton Petcherski ◽  
Evan P. Taddeo ◽  
Rebeca Acín-Pérez ◽  
...  

SummaryThe incompletely understood pathogenesis of pulmonary fibrosis (PF) and lack of reliable preclinical disease models have limited development of effective therapies. An emerging literature now implicates alveolar epithelial type 2 cell (AEC2) dysfunction as an initiating pathogenic event in the onset of a variety of PF syndromes, including adult idiopathic pulmonary fibrosis (IPF) and childhood interstitial lung disease (chILD). However, inability to access primary AEC2s from patients, particularly at early disease stages, has impeded identification of disease-initiating mechanisms. Here we present an in vitro reductionist model system that permits investigation of epithelial-intrinsic events that lead to AEC2 dysfunction over time using patient-derived cells that carry a disease-associated variant, SFTPCI73T, known to be expressed solely in AEC2s. After generating patient-specific induced pluripotent stem cells (iPSCs) and engineering their gene-edited (corrected) counterparts, we employ directed differentiation to produce pure populations of syngeneic corrected and mutant AEC2s, which we expand >1015 fold in vitro, providing a renewable source of cells for modeling disease onset. We find that mutant iPSC-derived AEC2s (iAEC2s) accumulate large amounts of misprocessed pro-SFTPC protein which mistrafficks to the plasma membrane, similar to changes observed in vivo in the donor patient’s AEC2s. These changes result in marked reduction in AEC2 progenitor capacity and several downstream perturbations in AEC2 proteostatic and bioenergetic programs, including a late block in autophagic flux, accumulation of dysfunctional mitochondria with consequent time-dependent metabolic reprograming from oxidative phosphorylation to glycolysis, and activation of an NF-κB dependent inflammatory response. Treatment of SFTPCI73T expressing iAEC2s with hydroxychloroquine, a medication commonly prescribed to these patients, results in aggravation of autophagy perturbations and metabolic reprogramming. Thus, iAEC2s provide a patientspecific preclinical platform for modeling the intrinsic epithelial dysfunction associated with the inception of interstitial lung disease.

Cell Reports ◽  
2021 ◽  
Vol 36 (9) ◽  
pp. 109636
Author(s):  
Konstantinos-Dionysios Alysandratos ◽  
Scott J. Russo ◽  
Anton Petcherski ◽  
Evan P. Taddeo ◽  
Rebeca Acín-Pérez ◽  
...  

2020 ◽  
Author(s):  
Konstantinos-Dionysios Alysandratos ◽  
Scott J. Russo ◽  
Anton Petcherski ◽  
Evan P. Taddeo ◽  
Rebeca Acín-Pérez ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. 2452
Author(s):  
Shiva Rattan Ambardar ◽  
Stephanie L. Hightower ◽  
Nikhil A. Huprikar ◽  
Kevin K. Chung ◽  
Anju Singhal ◽  
...  

Since the initial identification of the novel coronavirus SARS-CoV-2 in December 2019, the COVID-19 pandemic has become a leading cause of morbidity and mortality worldwide. As effective vaccines and treatments begin to emerge, it will become increasingly important to identify and proactively manage the long-term respiratory complications of severe disease. The patterns of imaging abnormalities coupled with data from prior coronavirus outbreaks suggest that patients with severe COVID-19 pneumonia are likely at an increased risk of progression to interstitial lung disease (ILD) and chronic pulmonary vascular disease. In this paper, we briefly review the definition, classification, and underlying pathophysiology of interstitial lung disease (ILD). We then review the current literature on the proposed mechanisms of lung injury in severe COVID-19 infection, and outline potential viral- and immune-mediated processes implicated in the development of post-COVID-19 pulmonary fibrosis (PCPF). Finally, we address patient-specific and iatrogenic risk factors that could lead to PCPF and discuss strategies for reducing risk of pulmonary complications/sequelae.


2019 ◽  
Vol 4 (3) ◽  
pp. 212-218 ◽  
Author(s):  
Lutz Wollin ◽  
Jörg HW Distler ◽  
Christopher P Denton ◽  
Martina Gahlemann

Interstitial lung disease is a common manifestation of systemic sclerosis. Systemic sclerosis–associated interstitial lung disease is characterized by progressive pulmonary fibrosis and a reduction in pulmonary function. Effective treatments for systemic sclerosis–associated interstitial lung disease are lacking. In addition to clinical similarities, systemic sclerosis–associated interstitial lung disease shows similarities to idiopathic pulmonary fibrosis in the pathophysiology of the underlying fibrotic processes. Idiopathic pulmonary fibrosis and systemic sclerosis–associated interstitial lung disease culminate in a self-sustaining pathway of pulmonary fibrosis in which fibroblasts are activated, myofibroblasts accumulate, and the excessive extracellular matrix is deposited. Nintedanib is a tyrosine kinase inhibitor that has been approved for the treatment of idiopathic pulmonary fibrosis. In patients with idiopathic pulmonary fibrosis, nintedanib slows disease progression by decreasing the rate of lung function decline. In this review, we summarize the antifibrotic, anti-inflammatory, and attenuated vascular remodeling effects of nintedanib demonstrated in in vitro studies and in animal models of aspects of systemic sclerosis. Nintedanib interferes at multiple critical steps in the pathobiology of systemic sclerosis–associated interstitial lung disease, providing a convincing rationale for its investigation as a potential therapy. Finally, we summarize the design of the randomized placebo-controlled SENSCIS® trial that is evaluating the efficacy and safety of nintedanib in patients with systemic sclerosis–associated interstitial lung disease.


2021 ◽  
pp. 00691-2020
Author(s):  
Aernoud A. van Batenburg ◽  
Karin M. Kazemier ◽  
Matthijs F.M. van Oosterhout ◽  
Joanne J. van der Vis ◽  
Jan C. Grutters ◽  
...  

Pulmonary fibrosis is strongly associated with telomere shortening and increased DNA damage. Key cells in the pathogenesis involve alveolar type 2 (AT2) cells, club cells and myofibroblasts, however to which extend these cells are affected by telomere shortening and DNA damage is yet unknown. We sought to determine the degree of, and correlation between telomere shortening and DNA damage in different cell types involved in the pathogenesis of progressive fibrosing interstitial lung disease. Telomere length and DNA damage were quantified, using combined fluorescence in situ hybridisation and immunofluorescence staining techniques, in AT2 cells, club cells and myofibroblasts of controls and patients with pulmonary fibrosis and a telomerase reverse transcriptase mutation (TERT-PF), idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (fHP). In IPF and TERT-PF lungs, AT2 cells contained shorter telomeres and expressed higher DNA damage signals than club cells and myofibroblasts. In fHP lungs, club cells contained highly elevated levels of DNA damage, while telomeres were not evidently short. In vitro, we found significantly shorter telomeres and higher DNA damage levels only in AT2 surrogate cell lines treated with telomerase inhibitor BIBR1532. Our study demonstrated that in IPF and TERT-PF lungs, telomere shortening and accumulation of DNA damage is primarily affecting AT2 cells, further supporting the importance of AT2 cells in these diseases, while in fHP the particularly high telomere-independent DNA damage signals in club cells, underscores it's bronchiolocentric pathogenesis. These findings suggest that cell type-specific telomere shortening and DNA damage may aid to discriminate between different drivers of fibrogenesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Ross Mills ◽  
Abhinav Mathur ◽  
Lisa M. Nicol ◽  
Jeremy J. Walker ◽  
Alexander A. Przybylski ◽  
...  

Rationale. Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease, with high mortality. Currently, the aetiology and the pathology of IPF are poorly understood, with both innate and adaptive responses previously being implicated in the disease pathogenesis. Heat shock proteins (Hsp) and antibodies to Hsp in patients with IPF have been suggested as therapeutic targets and prognostic biomarkers, respectively. We aimed to study the relationship between the expression of Hsp72 and anti-Hsp72 antibodies in the BAL fluid and serum Aw disease progression in patients with IPF.Methods. A novel indirect ELISA to measure anti-Hsp72 IgG was developed and together with commercially available ELISAs used to detect Hsp72 IgG, Hsp72 IgGAM, and Hsp72 antigen, in the serum and BALf of a cohort of IPF (n=107) and other interstitial lung disease (ILD) patients (n=66). Immunohistochemistry was used to detect Hsp72 in lung tissue. The cytokine expression from monocyte-derived macrophages was measured by ELISA.Results. Anti-Hsp72 IgG was detectable in the serum and BALf of IPF (n=107) and other ILDs (n=66). Total immunoglobulin concentrations in the BALf showed an excessive adaptive response in IPF compared to other ILDs and healthy controls (p=0.026). Immunohistochemistry detection of C4d and Hsp72 showed that these antibodies may be targeting high expressing Hsp72 type II alveolar epithelial cells. However, detection of anti-Hsp72 antibodies in the BALf revealed that increasing concentrations were associated with improved patient survival (adjusted HR 0.62, 95% CI 0.45-0.85;p=0.003).In vitroexperiments demonstrate that anti-Hsp72 complexes stimulate macrophages to secrete CXCL8 and CCL18.Conclusion. Our results indicate that intrapulmonary anti-Hsp72 antibodies are associated with improved outcomes in IPF. These may represent natural autoantibodies, and anti-Hsp72 IgM and IgA may provide a beneficial role in disease pathogenesis, though the mechanism of action for this has yet to be determined.


2021 ◽  
Vol 10 (11) ◽  
pp. 2285
Author(s):  
John N. Shumar ◽  
Abhimanyu Chandel ◽  
Christopher S. King

Progressive fibrosing interstitial lung disease (PF-ILD) describes a phenotypic subset of interstitial lung diseases characterized by progressive, intractable lung fibrosis. PF-ILD is separate from, but has radiographic, histopathologic, and clinical similarities to idiopathic pulmonary fibrosis. Two antifibrotic medications, nintedanib and pirfenidone, have been approved for use in patients with idiopathic pulmonary fibrosis. Recently completed randomized controlled trials have demonstrated the clinical efficacy of antifibrotic therapy in patients with PF-ILD. The validation of efficacy of antifibrotic therapy in PF-ILD has changed the treatment landscape for all of the fibrotic lung diseases, providing a new treatment pathway and opening the door for combined antifibrotic and immunosuppressant drug therapy to address both the fibrotic and inflammatory components of ILD characterized by mixed pathophysiologic pathways.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 982.2-982
Author(s):  
C. Aguilera Cros ◽  
M. Gomez Vargas ◽  
R. J. Gil Velez ◽  
J. A. Rodriguez Portal

Background:There is no specific treatment for interstitial lung disease (ILD) secondary to Rheumatoid Arthritis (RA) other than the treatment of RA without extra-articular involvement. Current regimens usually include corticosteroid therapy with or without immunosuppressants (IS), there is no consensus for the treatment.Objectives:To analyze the different treatment regimens in a cohort of patients with ILD and RA in our clinical practice.Methods:Descriptive study of 57 patients treated in our Hospital (1/1/2018 until 12/31/2019) with a diagnosis of RA (ACR 2010 criteria) and secondary ILD.The most recent American Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society (JRS)/Latin American Thoracic Society (ALAT) guidelines define three HRCT (High Resolution Computed Tomography) patterns of fibrosing lung disease in the setting of idiopathic pulmonary fibrosis (IPF): definite Usual Interstitial pneumonia (UIP) (traction bronchiectasis and honeycombing), possible UIP and inconsistent with UIP. The distinction between definite UIP and possible UIP in these to the presence or absence of honeycombing. Approved by the Ethics Committee.Quantitative variables are expressed as mean (SD) and dichotomous variables as percentages (%). Statistical analysis with SPSS version 21.Results:21 men and 36 women were included, with a mean age of 69 ± 10 years (mean ± SD), history of smoking (smokers 14%, non-smokers 43%, former smokers 42%). Clinical ILD at diagnosis (dyspnea 61%, dry cough 56%, crackling 70%, acropachy 7%). 84% were positive rheumatoid factor and 70% positive anticitrullinated protein antibody.Diagnosis of ILD by HRCT in 100% of patients with different patterns: defined UIP 26 (45%), probable UIP 2 (3%) and not UIP 29 (50%). The diagnosis of ILD was confirmed by biopsy in 12 patients.79% underwent (T) treatment prior to the diagnosis of ILD with glucocorticoids and disease-modifying drugs (DMARD). Among the traditional DMARDs used were: Methotrexate 68% (there were no cases of MTX pneumonitis), Leflunomide 47%, Hydroxychloroquine 26% and Sulfasalazine 21%. Biological therapy in 15 patients: Etanercept 19%, Adalimumab 5%, Infliximab 3% and Certolizumab 2%. Two patients presented an exacerbation and rapid progression of the ILD during the T with Etanercept with the final result of death.T with IS after the diagnosis of ILD in 80% of patients (Azathioprine 15, Rituximab 14, Abatacept 10, Tocilizumab 4, Sarilumab 1, Mofetil mycophenolate 1 and Cyclophosphamide 1).Two patients with defined UIP perform T with antifibrotic: 1st Nintedanib (INBUILD Trial, This article was published on September 29, 2019, at NEJM.org) 2nd Pirfenidone (initial diagnosis of IPF Idiopathic Pulmonary Fibrosis and subsequent of seropositive RA with UIP). Both improved greater than 10% in forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO) in the 6 months after onset of T.Conclusion:Our results, in general, agree with what is published in the literature. Prospective, multicentre and larger sample studies are necessary to better define which patients would benefit more from IS T or antifibrotic T (or if the antifibrotic should be added to the previous IS).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document