scholarly journals A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution

2020 ◽  
Author(s):  
RJS Orr ◽  
E Di Martino ◽  
DP Gordon ◽  
MH Ramsfjell ◽  
HL Mello ◽  
...  

AbstractLarger molecular phylogenies based on ever more genes are becoming commonplace with the advent of cheaper and more streamlined sequencing and bioinformatics pipelines. However, many groups of inconspicuous but no less evolutionarily or ecologically important marine invertebrates are still neglected in the quest for understanding species- and higher-level phylogenetic relationships. Here, we alleviate this issue by presenting the molecular sequences of 165 cheilostome bryozoan species from New Zealand waters. New Zealand is our geographic region of choice as its cheilostome fauna is taxonomically, functionally and ecologically diverse, and better characterized than many other such faunas in the world. Using this most taxonomically broadly-sampled and statistically-supported cheilostome phylogeny comprising 214 species, when including previously published sequences, we tested several existing systematic hypotheses based solely on morphological observations. We find that lower taxonomic level hypotheses (species and genera) are robust while our inferred trees did not reflect current higher-level systematics (family and above), illustrating a general need for the rethinking of current hypotheses. To illustrate the utility of our new phylogeny, we reconstruct the evolutionary history of frontal shields (i.e., a calcified bodywall layer in ascus-bearing cheilostomes) and asked if its presence has any bearing on the diversification rates of cheilostomes.

2007 ◽  
Vol 55 (2) ◽  
pp. 73 ◽  
Author(s):  
Amy Driskell ◽  
Les Christidis ◽  
B. J. Gill ◽  
Walter E. Boles ◽  
F. Keith Barker ◽  
...  

The results of phylogenetic analysis of two molecular datasets sampling all three endemic New Zealand ‘honeyeaters’ (Prosthemadera novaeseelandiae, Anthornis melanura and Notiomystis cincta) are reported. The undisputed relatedness of the first two species to other honeyeaters (Meliphagidae), and a close relationship between them, are demonstrated. However, our results confirm that Notiomystis is not a honeyeater, but is instead most closely related to the Callaeidae (New Zealand wattlebirds) represented by Philesturnus carunculatus in our study. An estimated divergence time for Notiomystis and Philesturnus of 33.8 mya (Oligocene) suggests a very long evolutionary history of this clade in New Zealand. As a taxonomic interpretation of these data we place Notiomystis in a new family of its own which takes the name Notiomystidae. We expect this new phylogenetic and taxonomic information to assist policy decisions for the conservation of this rare bird.


2019 ◽  
pp. 196-206
Author(s):  
Kimberley J. Hockings ◽  
Robin I.M. Dunbar

Humans and alcohol have shared a very long history. In this final chapter, we highlight some of the key findings that emerge from the chapters in this book, in particular the evolutionary history of our adaptation to alcohol consumption and the social role that alcohol consumption plays, and has played, in human societies across the world. This raises a major contradiction in the literature, namely the fact that, despite this long history, the medical profession typically views alcohol as destructive. We draw attention to several avenues that would repay future research and how humans’ relationship with alcohol stands to change and evolve.


2018 ◽  
Vol 92 (5) ◽  
pp. 872-882 ◽  
Author(s):  
Tomasz K. Baumiller ◽  
R. Ewan Fordyce

AbstractWe describe a nearly complete, and thus extremely rare, feather star (Crinoidea, Comatulida) from Oligocene strata of North Otago/South Canterbury, New Zealand. A detailed analysis of this specimen, as well as newly recovered material and previously described fragmentary remains from nearby contemporaneous sedimentary units, in addition to relevant historical specimens, lead us to conclude that it cannot be placed in any currently established genus. A new genus,Rautangaroa,is proposed to accommodate it.This intact specimen ofRautangaroa aotearoa(Eagle, 2007), provides rare data on the morphology of arms and cirri. It represents the first example of arm autotomy and regeneration in a fossil feather star and thus has bearing on the importance of predation to the evolutionary history of this group.UUID:http://zoobank.org/c050dafd-93ba-4334-b11b-59209aabb588


Symbiosis ◽  
2020 ◽  
Vol 80 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ewa Sajnaga ◽  
Waldemar Kazimierczak

AbstractEntomopathogenic bacteria from the genera Photorhabdus and Xenorhabdus are closely related Gram-negative bacilli from the family Enterobacteriaceae (γ-Proteobacteria). They establish obligate mutualistic associations with soil nematodes from the genera Steinernema and Heterorhabditis to facilitate insect pathogenesis. The research of these two bacterial genera is focused mainly on their unique interactions with two different animal hosts, i.e. nematodes and insects. So far, studies of the mutualistic bacteria of nematodes collected from around the world have contributed to an increase in the number of the described Xenorhabdus and Photorhabdus species. Recently, the classification system of entomopatogenic nematode microsymbionts has undergone profound revision and now 26 species of the genus Xenorhabdus and 19 species of the genus Photorhabdus have been identified. Despite their similar life style and close phylogenetic origin, Photorhabdus and Xenorhabdus bacterial species differ significantly in e.g. the nematode host range, symbiotic strategies for parasite success, and arrays of released antibiotics and insecticidal toxins. As the knowledge of the diversity of entomopathogenic nematode microsymbionts helps to enable the use thereof, assessment of the phylogenetic relationships of these astounding bacterial genera is now a major challenge for researchers. The present article summarizes the main information on the taxonomy and evolutionary history of Xenorhabdus and Photorhabdus, entomopathogenic nematode symbionts.


2001 ◽  
Vol 24 (4) ◽  
pp. 618-625 ◽  
Author(s):  
Michael Kubovy ◽  
William Epstein

Shepard has supposed that the mind is stocked with innate knowledge of the world and that this knowledge figures prominently in the way we see the world. According to him, this internal knowledge is the legacy of a process of internalization; a process of natural selection over the evolutionary history of the species. Shepard has developed his proposal most fully in his analysis of the relation between kinematic geometry and the shape of the motion path in apparent motion displays. We argue that Shepard has made a case for applying the principles of kinematic geometry to the perception of motion, but that he has not made the case for injecting these principles into the mind of the percipient. We offer a more modest interpretation of his important findings: that kinematic geometry may be a model of apparent motion. Inasmuch as our recommended interpretation does not lodge geometry in the mind of the percipient, the motivation of positing internalization, a process that moves kinematic geometry into the mind, is obviated. In our conclusion, we suggest that cognitive psychologists, in their embrace of internal mental universals and internalization may have been seduced by the siren call of metaphor.


2018 ◽  
Vol 1 (1) ◽  
pp. 65
Author(s):  
WIESŁAW KRZEMIŃSKI ◽  
IWONA KANIA ◽  
KATARZYNA KOPEĆ ◽  
MAGDALENA OKOŃ

The description of a new species of the genus Dicranomyia Stephens, 1829 (Diptera: Limoniidae) from Colombian copal is presented. The newly described species Dicranomyia (Dicranomyia) colombiana sp. nov. is the first representative of the genus in Colombian copal. The ecological and biogeographical patterns, morphological evolution and the aspects evolutionary history of extinct and extant representatives of Dicranomyia (with particular references to the representatives in Colombian copal) are discussed. 


2017 ◽  
Vol 31 (6) ◽  
pp. 765 ◽  
Author(s):  
Phillip Barden ◽  
Brendon Boudinot ◽  
Andrea Lucky

The distinctive ant genus Leptomyrmex Mayr, 1862 had been thought to be endemic to Australasia for over 150 years, but enigmatic Neotropical fossils have challenged this view for decades. The present study responds to a recent and surprising discovery of extant Leptomyrmex species in Brazil with a thorough evaluation of the Dominican Republic fossil material, which dates to the Miocene. In the first case study of direct fossil inclusion within Formicidae Latreille, 1809, we incorporated both living and the extinct Leptomyrmex species. Through simultaneous analysis of molecular and morphological characters in both Bayesian and parsimony frameworks, we recovered the fossil taxon as sister-group to extant Leptomyrmex in Brazil while considering the influence of taxonomic and character sampling on inferred hypotheses relating to tree topology, biogeography and morphological evolution. We also identified potential loss of signal in the binning of morphological characters and tested the impact of parameterisation on divergence date estimation. Our results highlight the importance of securing sufficient taxon sampling for extant lineages when incorporating fossils and underscore the utility of diverse character sources in accurate placement of fossil terminals. Specifically, we find that fossil placement in this group is influenced by the inclusion of male-based characters and the newly discovered Neotropical ‘Lazarus taxon’.


Sign in / Sign up

Export Citation Format

Share Document