scholarly journals Transfer Learning for COVID-19 Pneumonia Detection and Classification in Chest X-ray Images

Author(s):  
Iason Katsamenis ◽  
Eftychios Protopapadakis ◽  
Athanasios Voulodimos ◽  
Anastasios Doulamis ◽  
Nikolaos Doulamis

We introduce a deep learning framework that can detect COVID-19 pneumonia in thoracic radiographs, as well as differentiate it from bacterial pneumonia infection. Deep classification models, such as convolutional neural networks (CNNs), require large-scale datasets in order to be trained and perform properly. Since the number of X-ray samples related to COVID-19 is limited, transfer learning (TL) appears as the go-to method to alleviate the demand for training data and develop accurate automated diagnosis models. In this context, networks are able to gain knowledge from pretrained networks on large-scale image datasets or alternative data-rich sources (i.e. bacterial and viral pneumonia radiographs). The experimental results indicate that the TL approach outperforms the performance obtained without TL, for the COVID-19 classification task in chest X-ray images.

2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Buyut Khoirul Umri ◽  
Ema Utami ◽  
Mei P Kurniawan

Covid-19 menyerang sel-sel epitel yang melapisi saluran pernapasan sehingga dalam kasus ini dapat memanfaatkan gambar x-ray dada untuk menganalisis kesehatan paru-paru pada pasien. Menggunakan x-ray dalam bidang medis merupakan metode yang lebih cepat, lebih mudah dan tidak berbahaya yang dapat dimanfaatkan pada banyak hal. Salah satu metode yang paling sering digunakan dalam klasifikasi gambar adalah convolutional neural networks (CNN). CNN merupahan jenis neural network yang sering digunakan dalam data gambar dan sering digunakan dalam mendeteksi dan mengenali object pada sebuah gambar. Model arsitektur pada metode CNN juga dapat dikembangkan dengan transfer learning yang merupakan proses menggunakan kembali model pre-trained yang dilatih pada dataset besar, biasanya pada tugas klasifikasi gambar berskala besar. Tinjauan literature review ini digunakan untuk menganalisis penggunaan transfer learning pada CNN sebagai metode yang dapat digunakan untuk mendeteksi covid-19 pada gambar x-ray dada. Hasil sistematis review menunjukkan bahwa algoritma CNN dapat digunakan dengan akruasi yang baik dalam mendeteksi covid-19 pada gambar x-ray dada dan dengan pengembangan model transfer learning mampu mendapatkan performa yang maksimal dengan dataset yang besar maupun kecil.Kata Kunci—CNN, transfer learning, deteksi, covid-19Covid-19 attacks the epithelial cells lining the respiratory tract so that in this case it can utilize chest x-ray images to analyze the health of the lungs in patients. Using x-rays in the medical field is a faster, easier and harmless method that can be utilized in many ways. One of the most frequently used methods in image classification is convolutional neural networks (CNN). CNN is a type of neural network that is often used in image data and is often used in detecting and recognizing objects in an image. The architectural model in the CNN method can also be developed with transfer learning which is the process of reusing pre-trained models that are trained on large datasets, usually on the task of classifying large-scale images. This literature review review is used to analyze the use of transfer learning on CNN as a method that can be used to detect covid-19 on chest x-ray images. The systematic review results show that the CNN algorithm can be used with good accuracy in detecting covid-19 on chest x-ray images and by developing transfer learning models able to get maximum performance with large and small datasets.Keywords—CNN, transfer learning, detection, covid-19


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10309
Author(s):  
Shreeja Kikkisetti ◽  
Jocelyn Zhu ◽  
Beiyi Shen ◽  
Haifang Li ◽  
Tim Q. Duong

Portable chest X-ray (pCXR) has become an indispensable tool in the management of Coronavirus Disease 2019 (COVID-19) lung infection. This study employed deep-learning convolutional neural networks to classify COVID-19 lung infections on pCXR from normal and related lung infections to potentially enable more timely and accurate diagnosis. This retrospect study employed deep-learning convolutional neural network (CNN) with transfer learning to classify based on pCXRs COVID-19 pneumonia (N = 455) on pCXR from normal (N = 532), bacterial pneumonia (N = 492), and non-COVID viral pneumonia (N = 552). The data was randomly split into 75% training and 25% testing, randomly. A five-fold cross-validation was used for the testing set separately. Performance was evaluated using receiver-operating curve analysis. Comparison was made with CNN operated on the whole pCXR and segmented lungs. CNN accurately classified COVID-19 pCXR from those of normal, bacterial pneumonia, and non-COVID-19 viral pneumonia patients in a multiclass model. The overall sensitivity, specificity, accuracy, and AUC were 0.79, 0.93, and 0.79, 0.85 respectively (whole pCXR), and were 0.91, 0.93, 0.88, and 0.89 (CXR of segmented lung). The performance was generally better using segmented lungs. Heatmaps showed that CNN accurately localized areas of hazy appearance, ground glass opacity and/or consolidation on the pCXR. Deep-learning convolutional neural network with transfer learning accurately classifies COVID-19 on portable chest X-ray against normal, bacterial pneumonia or non-COVID viral pneumonia. This approach has the potential to help radiologists and frontline physicians by providing more timely and accurate diagnosis.


Developing a system that helps in detecting pneumonia in chest x-ray images of lungs at a high accuracy. Firstly, a raw image is being preprocessed with the help of Otsu Thresholding and an equalizer. This helps in detecting pneumonia clouds and identifying the ratio of healthy lung region to the total region minimum. The above task is determined by importing the original chest x-ray images in the dataset and then calculating the ratio. The preprocessed data is then fed into Inception V3 model that accurately predicts the percentage of how much pneumonia is spread. This helps in identifying pneumonia present in that area and helps determining the prescribed drugs to help them clear off the symptoms.


Author(s):  
Xiaoxiao Sun ◽  
Liyi Chen ◽  
Jufeng Yang

Fine-grained classification is absorbed in recognizing the subordinate categories of one field, which need a large number of labeled images, while it is expensive to label these images. Utilizing web data has been an attractive option to meet the demands of training data for convolutional neural networks (CNNs), especially when the well-labeled data is not enough. However, directly training on such easily obtained images often leads to unsatisfactory performance due to factors such as noisy labels. This has been conventionally addressed by reducing the noise level of web data. In this paper, we take a fundamentally different view and propose an adversarial discriminative loss to advocate representation coherence between standard and web data. This is further encapsulated in a simple, scalable and end-to-end trainable multi-task learning framework. We experiment on three public datasets using large-scale web data to evaluate the effectiveness and generalizability of the proposed approach. Extensive experiments demonstrate that our approach performs favorably against the state-of-the-art methods.


2022 ◽  
Vol 3 ◽  
Author(s):  
Yi Chang ◽  
Xin Jing ◽  
Zhao Ren ◽  
Björn W. Schuller

Since the COronaVIrus Disease 2019 (COVID-19) outbreak, developing a digital diagnostic tool to detect COVID-19 from respiratory sounds with computer audition has become an essential topic due to its advantages of being swift, low-cost, and eco-friendly. However, prior studies mainly focused on small-scale COVID-19 datasets. To build a robust model, the large-scale multi-sound FluSense dataset is utilised to help detect COVID-19 from cough sounds in this study. Due to the gap between FluSense and the COVID-19-related datasets consisting of cough only, the transfer learning framework (namely CovNet) is proposed and applied rather than simply augmenting the training data with FluSense. The CovNet contains (i) a parameter transferring strategy and (ii) an embedding incorporation strategy. Specifically, to validate the CovNet's effectiveness, it is used to transfer knowledge from FluSense to COUGHVID, a large-scale cough sound database of COVID-19 negative and COVID-19 positive individuals. The trained model on FluSense and COUGHVID is further applied under the CovNet to another two small-scale cough datasets for COVID-19 detection, the COVID-19 cough sub-challenge (CCS) database in the INTERSPEECH Computational Paralinguistics challengE (ComParE) challenge and the DiCOVA Track-1 database. By training four simple convolutional neural networks (CNNs) in the transfer learning framework, our approach achieves an absolute improvement of 3.57% over the baseline of DiCOVA Track-1 validation of the area under the receiver operating characteristic curve (ROC AUC) and an absolute improvement of 1.73% over the baseline of ComParE CCS test unweighted average recall (UAR).


2020 ◽  
Vol 12 (3) ◽  
pp. 132-141
Author(s):  
Nator Junior Carvalho da Costa ◽  
Jose Vigno Moura Sousa ◽  
Domingos Bruno Sousa Santos ◽  
Francisco das Chagas Fontenele Marques Junior ◽  
Rodrigo Teixeira de Melo

This paper describes a comparison between three pre-trained neural networks for the classification of chest X-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer; The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatric patients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data were divided into three groups: validation, testing and training. A comparison was made with the work of kermany who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (Bacterial Pneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the best precision, which was 95.35 \% (Pneumonia X Normal) and 91.79 \% (Viral Pneumonia X Bacterial Pneumonia) against 92.80 \% in (Pneumonia X Normal) and 90.70 \% (Viral Pneumonia X Bacterial Pneumonia) from kermany's work, the Xception network also achieved an improvement in accuracy compared to kermany's work, with 93.59 \% at (Normal X Pneumonia) and 91.03 \% in (Viral Pneumonia X Bacterial Pneumonia).


Author(s):  
Saleh Albahli ◽  
Waleed Albattah

Objective: Automatic prediction of COVID-19 using deep convolution neural networks based pre-trained transfer models and Chest X-ray images. Method: This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images as compared to diagnosis performed by experts in the medical community. Result: Due to the fact that the dataset available for COVID-19 is still limited, the best model to use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation) among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2 and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit when data augmentation is not used, this is due to the small amount of data used for training and validation. Conclusion: A deep transfer learning is proposed to detecting the COVID-19 automatically from chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with normal chest Xrays. The study is aimed at helping doctors in making decisions in their clinical practice due its high performance and effectiveness, the study also gives an insight to how transfer learning was used to automatically detect the COVID-19.


2020 ◽  
Author(s):  
Sarath Pathari ◽  
Rahul U

In this study, a dataset of X-ray images from patients with common viral pneumonia, bacterial pneumonia, confirmed Covid-19 disease was utilized for the automatic detection of the Coronavirus disease. The point of the investigation is to assess the exhibition of cutting edge convolutional neural system structures proposed over the ongoing years for clinical picture order. In particular, the system called Transfer Learning was received. With transfer learning, the location of different variations from the norm in little clinical picture datasets is a reachable objective, regularly yielding amazing outcomes. The datasets used in this trial. Firstly, a collection of 24000 X-ray images includes 6000 images for confirmed Covid-19 disease,6000 confirmed common bacterial pneumonia and 6000 images of normal conditions. The information was gathered and expanded from the accessible X-Ray pictures on open clinical stores. The outcomes recommend that Deep Learning with X-Ray imaging may separate noteworthy biomarkers identified with the Covid-19 sickness, while the best precision, affectability, and particularity acquired is 97.83%, 96.81%, and 98.56% individually.


Author(s):  
Asmaa Abbas ◽  
Mohammed M. Abdelsamea ◽  
Mohamed Medhat Gaber

ABSTRACTDue to the high availability of large-scale annotated image datasets, knowledge transfer from pre-trained models showed outstanding performance in medical image classification. However, building a robust image classification model for datasets with data irregularity or imbalanced classes can be a very challenging task, especially in the medical imaging domain. In this paper, we propose a novel deep convolutional neural network, we called Self Supervised Super Sample Decomposition for Transfer learning (4S-DT) model. 4S-DT encourages a coarse-to-fine transfer learning from large-scale image recognition tasks to a specific chest X-ray image classification task using a generic self-supervised sample decomposition approach. Our main contribution is a novel self-supervised learning mechanism guided by a super sample decomposition of unlabelled chest X-ray images. 4S-DT helps in improving the robustness of knowledge transformation via a downstream learning strategy with a class-decomposition layer to simplify the local structure of the data. 4S-DT can deal with any irregularities in the image dataset by investigating its class boundaries using a downstream class-decomposition mechanism. We used 50,000 unlabelled chest X-ray images to achieve our coarse-to-fine transfer learning with an application to COVID-19 detection, as an exemplar. 4S-DT has achieved an accuracy of 97.54% in the detection of COVID-19 cases on an extended test set enriched by augmented images, out of which all real COVID-19 cases were detected, which was the highest accuracy obtained when compared to other methods.


Sign in / Sign up

Export Citation Format

Share Document