scholarly journals Invasive garlic mustard demonstrates stronger relationships with pathotrophic than mycorrhizal fungi

2020 ◽  
Author(s):  
Joseph D. Edwards ◽  
Wendy H. Yang ◽  
Anthony C. Yannarell

AbstractGarlic mustard (Alliaria petiolata) has long been known to degrade mycorrhizal mutualisms in soils it invades and may also promote the abundance of microbial pathogens harmful to native plants or alter saprotrophic communities to disrupt nutrient cycling. Phenology of other invasive species, like Lepidium latifolium and Lonicera maackii, plays a role in their interactions with soil microbial communities, and so we may expect garlic mustard phenology to influence its effects on native soil microbiomes as well. Here, we investigate differences in fungal, bacterial, and archaeal community structure, as well as the abundance of key functional groups, between garlic mustard present, absent, and removed treatments in central-Illinois forest soils across different stages of the garlic mustard life cycle. Across its phenology, garlic mustard present soils had different overall fungal community structure and greater abundance of pathotrophic fungi than soils where garlic mustard was absent or removed. However, abundance of ectomycorrhizal and saprotrophic fungi as well as bacterial and archaeal community structure were similar between treatments and did not interact with garlic mustard phenology. The most abundant overall fungal taxon was a plant pathogen, Entorrhiza aschersoniana, that was greatest in garlic mustard present soils, particularly while the plants were flowering. These results support the hypothesis that invasive plants form active relationships with microbial pathogens that could contribute to their overall success in invading ecosystems.

2021 ◽  
Vol 11 (11) ◽  
pp. 5297
Author(s):  
Stavros D. Veresoglou ◽  
Leonie Grünfeld ◽  
Magkdi Mola

The roots of most plants host diverse assemblages of arbuscular mycorrhizal fungi (AMF), which benefit the plant hosts in diverse ways. Even though we understand that such AMF assemblages are non-random, we do not fully appreciate whether and how environmental settings can make them more or less predictable in time and space. Here we present results from three controlled experiments, where we manipulated two environmental parameters, habitat connectance and habitat quality, to address the degree to which plant roots in archipelagos of high connectivity and invariable habitats are colonized with (i) less diverse and (ii) easier to predict AMF assemblages. We observed no differences in diversity across our manipulations. We show, however, that mixing habitats and varying connectivity render AMF assemblages less predictable, which we could only detect within and not between our experimental units. We also demonstrate that none of our manipulations favoured any specific AMF taxa. We present here evidence that the community structure of AMF is less responsive to spatio-temporal manipulations than root colonization rates which is a facet of the symbiosis which we currently poorly understand.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau4578 ◽  
Author(s):  
Marina Semchenko ◽  
Jonathan W. Leff ◽  
Yudi M. Lozano ◽  
Sirgi Saar ◽  
John Davison ◽  
...  

Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil.


2010 ◽  
Vol 3 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Roger C. Anderson ◽  
M. Rebecca Anderson ◽  
Jonathan T. Bauer ◽  
Mitchell Slater ◽  
Jamie Herold ◽  
...  

2009 ◽  
Vol 2 (3) ◽  
pp. 230-236 ◽  
Author(s):  
E. Kathryn Barto ◽  
Don Cipollini

AbstractWe used a growth chamber experiment with first-year garlic mustard plants to explore the effects of three garlic mustard removal techniques (treatment with glyphosate, pulling out the entire plant, and clipping the shoot) on growth of the native herb pale jewelweed and its associated mycorrhizal fungi. We also explored the effects of activated carbon and mycorrhizal inocula amendments. We monitored plant height, intra- and extraradical mycorrhizal structures, root growth, and the fractal dimension of the root system. Removing as much garlic mustard root tissue as possible by hand pulling plants led to larger jewelweed plants than other removal methods. Activated carbon and mycorrhizal inocula did not improve plant growth.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12309
Author(s):  
Bin Wang ◽  
Shaohua Chu ◽  
Xiaorui Liu ◽  
Dan Zhang ◽  
Xiaotong Chai ◽  
...  

Background Secondary salinized soil in greenhouses often contains excess nitrate. Inoculation of Bacillus megaterium NCT-2 with nitrate assimilation ability represents an attractive approach for soil remediation. However, the effects of NCT-2 on the structure and function of soil microbial communities have not been explored. Methods Greenhouse experiments were carried out to investigate changes in soil properties, Brassica chinensis L. growth, bacterial, and fungal community structure and function in response to NCT-2 inoculation. Results The NCT-2 inoculant significantly reduced the nitrate content in B. chinensis and inhibited the rebound of soil nitrate in the later stage. The shifts of bacterial community structure and function by NCT-2 was negligible, and a greater disturbance of soil fungal community structure and function was observed, for example the strong inhibitory effect on ectomycorrhizal fungi. These results indicated that the NCT-2 inoculant likely achieved the remediation effect in secondary salinized soil by shifting fungal community. The present findings add to the current understanding of microbial interactions in response to bacterial inoculation and can be of great significance for the application of NCT-2 inoculants in secondary salinized soil remediation.


2020 ◽  
Author(s):  
Yuli Marcela Ordoñez ◽  
Lucas Villard ◽  
Isabel Ceballos ◽  
Frédéric G Masclaux ◽  
Alia Rodriguez ◽  
...  

Arbuscular mycorrhizal fungi (AMF) have the potential to increase crop yields and all globally important crops form the mycorrhizal symbiosis. Only a few studies have investigated the impact of introduced AMF on local AMF communities and most studies have only investigated effects of one isolate. We studied the impact on AMF community structure of inoculating roots of the globally important crop cassava with highly genetically-related clonal siblings of two genetically different Rhizophagus irregularis isolates. We hypothesized that inoculation with R. irregularis siblings differentially influences the structure and the diversity of the pre-existing AMF community colonizing cassava. Alpha and beta taxonomic and phylogenetic AMF diversity were strongly and significantly altered differentially following inoculation with sibling AMF progeny. In most cases, the effects were also cassava-genotype specific. Although biomass production and AMF colonization were also both differentially affected by inoculation with sibling R. irregularis progeny these variables were not correlated with changes in the AMF community structure. The results highlight that investigations on the impact of an introduced AMF species, that use only one isolate, are unlikely to be representative of the overall effects of that AMF species and that the genetic identity of the host must be considered. The amount of inoculum added was very small and effects were observed 12 months following inoculation. That such a small amount of almost genetically identical fungal inoculum can strongly differentially influence AMF community structure 12 months following inoculation, indicates that AMF communities in tropical soils are not very resistant to perturbation.


2015 ◽  
Vol 2 (9) ◽  
pp. 150300 ◽  
Author(s):  
Sepideh Pakpour ◽  
John Klironomos

Disruption of mycorrhizal fungi that form symbioses with local native plants is a strategy used by some invasive exotic plants for competing within their resident communities. Example invasive plants include Alliaria petiolata (garlic mustard) and Brassica nigra (black mustard), both non-mycorrhizal plants in the Family Brassicaceae. Although there is clear evidence for mycorrhizal degradation, it is not known if such an effect is widespread across the naturalized range. In this study, we tested the ability of black mustard to degrade the local mycorrhizal symbiosis and supress the growth of native flora from across a variety of locations where black mustard has invaded. We found that the effects on mycorrhizal fungi and on the growth of native plants were consistently negative at the various sites. The present results indicate that degradation of the mycorrhizal symbiosis by black mustard is of general significance, and may be highly problematic considering the large range that it has occupied in open fields across North America.


2020 ◽  
Author(s):  
Katherine Duchesneau ◽  
Anneke Golemiec ◽  
Robert I. Colautti ◽  
Pedro M. Antunes

AbstractSoil feedback is thought to be an important contributor to the success of invasive plants. Despite evidence that invasive plants change soil microbial diversity, the functional roles of microbes impacted by invasion are still unclear. This knowledge is a critical component of our understanding of ecological mechanisms of plant invasion. Mounting evidence suggests Alliaria petiolata can suppress arbuscular mycorrhizal fungi (AMF) to disrupt native plant communities in controlled laboratory and greenhouse experiments, though it is less clear if allelochemicals persist under natural field conditions. Alternatively, invasive plants may accumulate pathogens that are more harmful to competitors as predicted by the Enemy of my Enemy Hypothesis (EEH). We examined changes in functional groups of soil bacteria and fungi associated with ten naturally occurring populations of A. petiolata using amplicon sequences (16S and ITS rRNA). To relate soil microbial communities to impacts on co-occurring plants, we measured root infections and AMF colonization. We found no changes in the diversity and abundance of AMF in plants co-occurring with A. petiolata, suggesting that mycorrhizal suppression in the field may not be as critical to the invasion of A. petiolata as implied by more controlled experiments. Instead, we found changes in pathogen community composition and marginal evidence of increase in root lesions of plants growing with A. petiolata, lending support to the EEH. In addition to these impacts on plant health, changes in ectomycorrhiza, and other nutrient cycling microbes may be important forces underlying the invasion of A. petiolata and its impact on ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document