scholarly journals Oscillatory brain activity links experience to expectancy during associative learning

2021 ◽  
Author(s):  
Kierstin Riels ◽  
Rafaela Campagnoli ◽  
Nina Thigpen ◽  
Andreas Keil

AbstractAssociating a novel situation with a specific outcome involves a cascade of cognitive processes, including selecting relevant stimuli, forming predictions regarding expected outcomes, and updating memorized predictions based on experience. The present manuscript uses computational modeling and machine learning to test the hypothesis that alpha-band (8-12 Hz) neural oscillations are involved in the updating of expectations based on experience. Participants learned that a visual cue predicted an aversive loud noise with a probability of 50 percent. The Rescorla-Wagner model of associative learning explained trial-wise changes in self-reported noise expectancy as well as alpha power changes. Both experience in the past trial and self-reported expectancy for the subsequent trial were accurately decoded based on the topographical distribution of alpha power. Decodable information during initial association formation and contingency report recurred when viewing the conditioned cue. Findings support the idea that alpha oscillations have multiple, simultaneous, and unique roles in association formation.

2012 ◽  
Vol 24 (2) ◽  
pp. 337-350 ◽  
Author(s):  
Álvaro Darriba ◽  
Paula Pazo-Álvarez ◽  
Almudena Capilla ◽  
Elena Amenedo

Despite the importance of change detection (CD) for visual perception and for performance in our environment, observers often miss changes that should be easily noticed. In the present study, we employed time–frequency analysis to investigate the neural activity associated with CD and change blindness (CB). Observers were presented with two successive visual displays and had to look for a change in orientation in any one of four sinusoid gratings between both displays. Theta power increased widely over the scalp after the second display when a change was consciously detected. Relative to no-change and CD, CB was associated with a pronounced theta power enhancement at parietal-occipital and occipital sites and broadly distributed alpha power suppression during the processing of the prechange display. Finally, power suppressions in the beta band following the second display show that, even when a change is not consciously detected, it might be represented to a certain degree. These results show the potential of time–frequency analysis to deepen our knowledge of the temporal curse of the neural events underlying CD. The results further reveal that the process resulting in CB begins even before the occurrence of the change itself.


Author(s):  
Muhammad Danish Mujib ◽  
Muhammad Abul Hasan ◽  
Saad Ahmed Qazi ◽  
Aleksandra Vuckovic

AbstractBinaural beat (BB) is a promising technique for memory improvement in elderly or people with neurological conditions. However, the related modulation of cortical networks followed by behavioral changes has not been investigated. The objective of this study is to establish a relationship between BB oscillatory brain activity evoked by stimulation and a behavioral response in a short term memory task. Three Groups A, B, and C of 20 participants each received alpha (10 Hz), beta (14 Hz), and gamma (30 Hz) BB, respectively, for 15 min. Their EEG was recorded in pre, during, and post BB states. Participants performed a digit span test before and after a BB session. A significant increase in the cognitive score was found only for Group A while a significant decrease in reaction time was noted for Groups A and C. Group A had a significant decrease of theta and increase of alpha power, and a significant increase of theta and decrease of gamma imaginary coherence (ICH) post BB. Group C had a significant increase in theta and gamma power accompanied by the increase of theta and gamma ICH post BB. The effectiveness of BB depends on the frequency of stimulation. A putative neural mechanism involves an increase in theta ICH in parieto-frontal and interhemispheric frontal networks.


2014 ◽  
Vol 112 (11) ◽  
pp. 2939-2945 ◽  
Author(s):  
E. Poliakov ◽  
M. G. Stokes ◽  
M. W. Woolrich ◽  
D. Mantini ◽  
D. E. Astle

Our ability to hold information in mind is strictly limited. We sought to understand the relationship between oscillatory brain activity and the allocation of resources within visual short-term memory (VSTM). Participants attempted to remember target arrows embedded among distracters and used a continuous method of responding to report their memory for a cued target item. Trial-to-trial variability in the absolute circular accuracy with which participants could report the target was predicted by event-related alpha synchronization during initial processing of the memoranda and by alpha desynchronization during the retrieval of those items from VSTM. Using a model-based approach, we were also able to explore further which parameters of VSTM-guided behavior were most influenced by alpha band changes. Alpha synchronization during item processing enhanced the precision with which an item could be retained without affecting the likelihood of an item being represented per se (as indexed by the guessing rate). Importantly, our data outline a neural mechanism that mirrors the precision with which items are retained; the greater the alpha power enhancement during encoding, the greater the precision with which that item can be retained.


2021 ◽  
Author(s):  
Kierstin Riels ◽  
Rafaela Ramos Campagnoli ◽  
Nina Thigpen ◽  
Andreas Keil

2009 ◽  
Vol 32 (2) ◽  
pp. 183-198 ◽  
Author(s):  
Chris J. Mitchell ◽  
Jan De Houwer ◽  
Peter F. Lovibond

AbstractThe past 50 years have seen an accumulation of evidence suggesting that associative learning depends on high-level cognitive processes that give rise to propositional knowledge. Yet, many learning theorists maintain a belief in a learning mechanism in which links between mental representations are formed automatically. We characterize and highlight the differences between the propositional and link approaches, and review the relevant empirical evidence. We conclude that learning is the consequence of propositional reasoning processes that cooperate with the unconscious processes involved in memory retrieval and perception. We argue that this new conceptual framework allows many of the important recent advances in associative learning research to be retained, but recast in a model that provides a firmer foundation for both immediate application and future research.


2020 ◽  
Author(s):  
Pieter Huycke ◽  
Pieter Verbeke ◽  
C. Nico Boehler ◽  
Tom Verguts

Theta and alpha frequency neural oscillations are important for learning and cognitive control, but their exact role has remained obscure. In particular, it is unknown whether they operate at similar timescales, and whether they support different cognitive processes. We recorded EEG in 30 healthy human participants while they performed a procedural learning task containing both novel (block-unique) and repeating stimuli. We investigated behavior and electrophysiology at both fast (i.e., within blocks) and slow (i.e., between blocks) time scales. Behaviorally, both response time and accuracy improved over both fast and slow timescales. At the same time, on the spectral level, theta power significantly decreased along the slow timescale, whereas alpha power instead significantly increased along the fast timescale. We thus demonstrate that theta and alpha both play a role during learning, but operate at different timescales. This result poses important empirical constraints for theories on learning, cognitive control, and neural oscillations.


2021 ◽  
Vol 11 (6) ◽  
pp. 536
Author(s):  
Stefan Schoisswohl ◽  
Berthold Langguth ◽  
Tobias Hebel ◽  
Mohamed A. Abdelnaim ◽  
Gregor Volberg ◽  
...  

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool potentially modulating pathological brain activity. Its clinical effectiveness is hampered by varying results and characterized by inter-individual variability in treatment responses. RTMS individualization might constitute a useful strategy to overcome this variability. A precondition for this approach would be that repeatedly applied protocols result in reliable effects. The condition tinnitus provides the advantage of immediate behavioral consequences (tinnitus loudness changes) after interventions and thus offers an excellent model to exemplify TMS personalization. Objective: The aim was to investigate the test–retest reliability of short rTMS stimulations in modifying tinnitus loudness and oscillatory brain activity as well as to examine the feasibility of rTMS individualization in tinnitus. Methods: Three short verum (1, 10, 20 Hz; 200 pulses) and one sham (0.1 Hz; 20 pulses) rTMS protocol were administered on two different days in 22 tinnitus patients. Before and after each protocol, oscillatory brain activity was recorded with electroencephalography (EEG), together with behavioral tinnitus loudness ratings. RTMS individualization was executed on the basis of behavioral and electrophysiological responses. Stimulation responders were identified via consistent sham-superior increases in tinnitus loudness (behavioral responders) and alpha power increases or gamma power decreases (alpha responders/gamma responders) in accordance with the prevalent neurophysiological models for tinnitus. Results: It was feasible to identify individualized rTMS protocols featuring reliable tinnitus loudness changes (55% behavioral responder), alpha increases (91% alpha responder) and gamma decreases (100% gamma responder), respectively. Alpha responses primary occurred over parieto-occipital areas, whereas gamma responses mainly appeared over frontal regions. On the contrary, test–retest correlation analyses per protocol at a group level were not significant neither for behavioral nor for electrophysiological effects. No associations between behavioral and EEG responses were found. Conclusion: RTMS individualization via behavioral and electrophysiological data in tinnitus can be considered as a feasible approach to overcome low reliability at the group level. The present results open the discussion favoring personalization utilizing neurophysiological markers rather than behavioral responses. These insights are not only useful for the rTMS treatment of tinnitus but also for neuromodulation interventions in other pathologies, as our results suggest that the individualization of stimulation protocols is feasible despite absent group-level reliability.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Kristina C. Backer ◽  
Heather Bortfeld

A debate over the past decade has focused on the so-called bilingual advantage—the idea that bilingual and multilingual individuals have enhanced domain-general executive functions, relative to monolinguals, due to competition-induced monitoring of both processing and representation from the task-irrelevant language(s). In this commentary, we consider a recent study by Pot, Keijzer, and de Bot (2018), which focused on the relationship between individual differences in language usage and performance on an executive function task among multilingual older adults. We discuss their approach and findings in light of a more general movement towards embracing complexity in this domain of research, including individuals’ sociocultural context and position in the lifespan. The field increasingly considers interactions between bilingualism/multilingualism and cognition, employing measures of language use well beyond the early dichotomous perspectives on language background. Moreover, new measures of bilingualism and analytical approaches are helping researchers interrogate the complexities of specific processing issues. Indeed, our review of the bilingualism/multilingualism literature confirms the increased appreciation researchers have for the range of factors—beyond whether someone speaks one, two, or more languages—that impact specific cognitive processes. Here, we highlight some of the most salient of these, and incorporate suggestions for a way forward that likewise encompasses neural perspectives on the topic.


Sign in / Sign up

Export Citation Format

Share Document