scholarly journals Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize

2021 ◽  
Author(s):  
Annett Richter ◽  
Adrian F. Powell ◽  
Mahdieh Mirzaei ◽  
Lucy J. Wang ◽  
Navid Movahed ◽  
...  

AbstractThe maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5-phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase α subunit; and IGL, indole glycerolphosphate lyase) convert indole-3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades. Fusions of yellow fluorescent protein (YFP) with maize IGPS enzymes and indole-3-glycerolphosphate lyases were all localized in chloroplasts. In bimolecular fluorescence complementation assays, IGPS1 interacted strongly with BX1 and IGL, IGPS2 interacted primarily with TSA, and IGPS3 interacted equally with all three indole-3-glycerolphosphate lyases. Whereas IGPS1 and IGPS3 expression was induced by insect feeding, IGPS2 expression was not. Transposon insertions in IGPS1 and IGPS3 reduced the abundance of both benzoxazinoids and free indole. Spodoptera exigua (beet armyworm) larvae show improved growth on igps1 mutant maize plants. Together, these results suggest that IGPS1 and IGPS3 function mainly in the biosynthesis of defensive metabolites, whereas IGPS2 may be involved in the biosynthesis of tryptophan. This metabolic channeling is similar, though less exclusive than that proposed for the three maize indole-3-glycerolphosphate lyases.

2003 ◽  
Vol 285 (4) ◽  
pp. C968-C976 ◽  
Author(s):  
O. Vagin ◽  
S. Denevich ◽  
G. Sachs

The factors determining trafficking of the gastric H,K-ATPase to the apical membrane remain elusive. To identify such determinants in the gastric H,K-ATPase, fusion proteins of yellow fluorescent protein (YFP) and the gastric H,K-ATPase β-subunit (YFP-β) and cyan fluorescent protein (CFP) and the gastric H,K-ATPase α-subunit (CFP-α) were expressed in HEK-293 cells. Then plasma membrane delivery of wild-type CFP-α, wild-type YFP-β, and YFP-β mutants lacking one or two of the seven β-subunit glycosylation sites was determined using confocal microscopy and surface biotinylation. Expression of the wild-type YFP-β resulted in the plasma membrane localization of the protein, whereas the expressed CFP-α was retained intracellularly. When coexpressed, both CFP-α and YFP-β were delivered to the plasma membrane. Removing each of the seven glycosylation sites, except the second one, from the extracellular loop of YFP-β prevented plasma membrane delivery of the protein. Only the mutant lacking the second glycosylation site (Asn103Gln) was localized both intracellularly and on the plasma membrane. A double mutant lacking the first (Asn99Gln) and the second (Asn103Gln) glycosylation sites displayed intracellular accumulation of the protein. Therefore, six of the seven glycosylation sites in the β-subunit are essential for the plasma membrane delivery of the β-subunit of the gastric H,K-ATPase, whereas the second glycosylation site (Asn103), which is not conserved among the β-subunits from different species, is not critical for plasma delivery of the protein.


2004 ◽  
Vol 32 (6) ◽  
pp. 1045-1047 ◽  
Author(s):  
A. Benians ◽  
M. Nobles ◽  
A. Tinker

The RGS (regulators of G-protein signalling) protein family sharpen signalling kinetics through heterotrimeric G-proteins by enhancing the GTPase activity of the G-protein α subunit. Paradoxically, they also accelerate receptor-stimulated activation. We investigated this paradox using the cloned G-protein gated K+ channel as a reporter of the G-protein cycle, and FRET (fluorescence resonance energy transfer) between cyan and yellow fluorescent protein tagged proteins to detect physical interactions. Our results with the neuronal protein, RGS8, show that the enhancement of activation kinetics is a variable phenomenon determined by receptor type, G-protein isoform and RGS8 expression levels. In contrast, deactivation was consistently accelerated after removal of agonist. FRET microscopy revealed a stable physical interaction between RGS8-yellow fluorescent protein and Go αA-cyan fluorescent protein that occurred in the presence and absence of receptor activation and was not competed away by Gβγ overexpression. FRET was also seen between RGS8 and Gγ, demonstrating that RGS8 binds to the heterotrimeric G-protein as well as G-protein α subunit-GTP and the transition complex. We propose a novel model for the action of RGS proteins on the G-protein cycle involving participation of the RGS in the ternary complex: for certain combinations of agonist, receptor and G-protein, RGS8 expression improves upon the ‘kinetic efficacy’ of G-protein activation.


2009 ◽  
Vol 55 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Haiming Li ◽  
Raymond J. Turner

The catalytic subunit of many Escherichia coli redox enzymes bares a twin-arginine translocation (Tat)-dependent signal peptide in its precursor, which directs the redox enzyme complex to this Sec-independent pathway. NarG of the E. coli nitrate reductase NarGHI complex possesses a vestige twin-arginine motif at its N terminus. During the cofactor insertion, and assembly and folding of the NarG–NarH complex, a chaperone protein, NarJ, is thought to interact with the N terminus and an unknown second site of NarG. Our previous in vitro study provided evidence that NarJ’s role shows some Tat system dependence. In this work, we investigated the associations of NarJ with a peptide of the first 50 residues of NarG (NarG50) in living cells. Two approaches were used: the Förster resonance energy transfer (FRET) based on yellow fluorescent protein – cyan fluorescent protein (YFP–CFP) and the bimolecular fluorescence complementation (BiFC). Compared with the wild-type (WT) E. coli cotransformants expressing both NarJ–YFP and NarG50–CFP, tat gene mutants gave an apparent FRET efficiency (Eapp) that was on the order of 25%–40% lower. These experiments implied a Tat system dependency of the in vivo associations between NarJ and the NarG50 peptide. In the BiFC assay, a 4-fold lower specific fluorescence intensity was observed for the E. coli WT cotransformants expressing both NarJ–Yc and NarG50–Yn than for its tat mutants, again suggesting a Tat dependence of the interactions. Fluorescence microscopy showed a “dot”/unipolar distribution of the reassembled YFP–NarJ:NarG50 both in WT and tat mutants, demonstrating a distinct localization of the interaction. Thus, although the degree of the interaction shows Tat dependence, the cell localization is less so. Taken together, these data further support that NarJ’s activity on NarG may be assisted by the Tat system.


2006 ◽  
Vol 172 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Ute Schmidt ◽  
Karsten Richter ◽  
Axel Bernhard Berger ◽  
Peter Lichter

The bimolecular fluorescence complementation (BiFC) assay, which allows the investigation of interacting molecules in vivo, was applied to study complex formation between the splicing factor Y14 and nuclear export factor 1 (NXF1), which evidence indicates are functionally associated with nuclear mRNA. Y14 linked to the COOH terminus of yellow fluorescent protein (YFP; YC-Y14), and NXF1 fused to the NH2 terminus of YFP (YN-NXF1) expressed in MCF7 cells yielded BiFC upon specific binding. Fluorescence accumulated within and around nuclear speckles, suggesting the involvement of speckles in mRNA processing and export. Accordingly, BiFC depended on transcription and full-length NXF1. Coimmunoprecipitation of YC-Y14 with YN-NXF1, NXF1, Y14, and RNA indicated that YC-Y14 and YN-NXF1 functionally associate with RNA. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching revealed that roughly half of the accumulated BiFC complexes were immobile in vivo. This immobile fraction was readily depleted by adenosine triphosphate (ATP) administration in permeabilized cells. These results suggest that a fraction of RNA, which remains in the nucleus for several hours despite its association with splicing and export proteins, accumulates in speckles because of an ATP-dependent mechanism.


2008 ◽  
Vol 19 (12) ◽  
pp. 5309-5326 ◽  
Author(s):  
Peter A. Keyel ◽  
James R. Thieman ◽  
Robyn Roth ◽  
Elif Erkan ◽  
Eric T. Everett ◽  
...  

The independently folded appendages of the large α and β2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The β2 subunit appendage contains a common binding site for β-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing β2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 α subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the β2 chain with the closely related endogenous β1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both β1 and β2 subunit transcripts recapitulates the strong α subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive β2-yellow fluorescent protein (YFP) expressed in the β1 + β2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the β appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a β2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a β-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with β2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and β-arrestin binding to a site upon the β2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and β-arrestin depend on a privileged β2 appendage site for proper cargo recruitment to clathrin bud sites.


2014 ◽  
Vol 306 (6) ◽  
pp. F672-F680 ◽  
Author(s):  
Min-Hwang Chang ◽  
An-Ping Chen ◽  
Michael F. Romero

Mutations in the electrogenic Na+/HCO3−cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1–158, EYFPN) or (159–238, EYFPC) was fused to the NH2or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2terminus of NBCe1A (EYFPN-N-NBCe1A w/ EYFPC-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20% wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50% wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.


2006 ◽  
Vol 87 (6) ◽  
pp. 1745-1750 ◽  
Author(s):  
Frederic Aparicio ◽  
Jesús A. Sánchez-Navarro ◽  
Vicente Pallás

Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.


2009 ◽  
Vol 390 (1) ◽  
Author(s):  
Corinna Ottmann ◽  
Michael Weyand ◽  
Alexander Wolf ◽  
Jürgen Kuhlmann ◽  
Christian Ottmann

Abstract Bimolecular fluorescence complementation (BiFC) using yellow fluorescent protein (YFP) is a widely employed method to study protein-protein interactions in cells. As yet, this technique has not been used in vitro. To evaluate a possible application of BiFC in vitro, we constructed a ‘superfolder split YFP’ system where 15 mutations enhance expression of the fusion proteins in Escherichia coli and enable a native purification due to improved solubility. Here, we present the crystal structure of ‘superfolder YFP’, providing the structural basis for the enhanced folding and stability characteristics. Complementation between the two non-fluorescent YFP fragments fused to HRas and Raf1RBD or to 14-3-3 and PMA2-CT52 resulted in the constitution of the functional fluorophore. The in vivo BiFC with these protein interaction pairs was demonstrated in eukaryotic cell lines as well. Here, we present for the first time BiFC in vitro studies with natively purified superfolder YFP fusion proteins and show the potential and drawbacks of this method for analyzing protein-protein interactions.


2013 ◽  
Vol 19 (4) ◽  
pp. 556-565 ◽  
Author(s):  
Jerrod A. Poe ◽  
Laura Vollmer ◽  
Andreas Vogt ◽  
Thomas E. Smithgall

Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus “2A” linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.


2009 ◽  
Vol 83 (21) ◽  
pp. 10857-10868 ◽  
Author(s):  
Sarah A. Connolly ◽  
George P. Leser ◽  
Theodore S. Jardetzky ◽  
Robert A. Lamb

ABSTRACT For paramyxoviruses, entry requires a receptor-binding protein (hemagglutinin-neuraminidase [HN], H, or G) and a fusion protein (F). Like other class I viral fusion proteins, F is expressed as a prefusion metastable protein that undergoes a refolding event to induce fusion. HN binding to its receptor triggers F refolding by an unknown mechanism. HN may serve as a clamp that stabilizes F in its prefusion state until HN binds the target cell (the “clamp model”). Alternatively, HN itself may undergo a conformational change after receptor binding that destabilizes F and causes F to trigger (the “provocateur model”). To examine F-HN interactions by bimolecular fluorescence complementation (BiFC), the cytoplasmic tails of parainfluenza virus 5 (PIV5) F and HN were fused to complementary fragments of yellow fluorescent protein (YFP). Coexpression of the BiFC constructs resulted in fluorescence; however, coexpression with unrelated BiFC constructs also produced fluorescence. The affinity of the two halves of YFP presumably superseded the F-HN interaction. Unexpectedly, coexpression of the BiFC F and HN constructs greatly enhanced fusion in multiple cell types. We hypothesize that the increase in fusion occurs because the BiFC tags bring F and HN together more frequently than occurs in a wild-type (wt) scenario. This implies that normally much of wt F is not associated with wt HN, in conflict with the clamp model for activation. Correspondingly, we show that wt PIV5 fusion occurs in an HN concentration-dependent manner. Also inconsistent with the clamp model are the findings that BiFC F does not adopt a postfusion conformation when expressed in the absence of HN and that HN coexpression does not provide resistance to the heat-induced triggering of F. In support of a provocateur model of F activation, we demonstrate by analysis of the morphology of soluble F trimers that the hyperfusogenic mutation S443P has a destabilizing effect on F.


Sign in / Sign up

Export Citation Format

Share Document