scholarly journals The statistics of k-mers from a sequence undergoing a simple mutation process without spurious matches

Author(s):  
Antonio Blanca ◽  
Robert S. Harris ◽  
David Koslicki ◽  
Paul Medvedev

AbstractK-mer-based methods are widely used in bioinformatics, but there are many gaps in our understanding of their statistical properties. Here, we consider the simple model where a sequence S (e.g. a genome or a read) undergoes a simple mutation process whereby each nucleotide is mutated independently with some probability r, under the assumption that there are no spurious k-mer matches. How does this process affect the k-mers of S? We derive the expectation and variance of the number of mutated k-mers and of the number of islands (a maximal interval of mutated k-mers) and oceans (a maximal interval of non-mutated k-mers). We then derive hypothesis tests and confidence intervals for r given an observed number of mutated k-mers, or, alternatively, given the Jaccard similarity (with or without minhash). We demonstrate the usefulness of our results using a few select applications: obtaining a confidence interval to supplement the Mash distance point estimate, filtering out reads during alignment by Minimap2, and rating long read alignments to a de Bruijn graph by Jabba.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Kingshuk Mukherjee ◽  
Massimiliano Rossi ◽  
Leena Salmela ◽  
Christina Boucher

AbstractGenome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper.


2021 ◽  
Author(s):  
Hector Roux de Bezieux ◽  
Leandro Lima ◽  
Fanny Perraudeau ◽  
Arnaud Mary ◽  
Sandrine Dudoit ◽  
...  

Genome wide association studies (GWAS), aiming to find genetic variants associated with a trait, have widely been used on bacteria to identify genetic determinants of drug resistance or hypervirulence. Recent bacterial GWAS methods usually rely on k-mers, whose presence in a genome can denote variants ranging from single nucleotide polymorphisms to mobile genetic elements. Since many bacterial species include genes that are not shared among all strains, this approach avoids the reliance on a common reference genome. However, the same gene can exist in slightly different versions across different strains, leading to diluted effects when trying to detect its association to a phenotype through k-mer based GWAS. Here we propose to overcome this by testing covariates built from closed connected subgraphs of the De Bruijn graph defined over genomic k-mers. These covariates are able to capture polymorphic genes as a single entity, improving k-mer based GWAS in terms of power and interpretability. As the number of subgraphs is exponential in the number of nodes in the DBG, a method naively testing all possible subgraphs would result in very low statistical power due to multiple testing corrections, and the mere exploration of these subgraphs would quickly become computationally intractable. The concept of testable hypothesis has successfully been used to address both problems in similar contexts. We leverage this concept to test all closed connected subgraphs by proposing a novel enumeration scheme for these objects which fully exploits the pruning opportunity offered by testability, resulting in drastic improvements in computational efficiency. We illustrate this on both real and simulated datasets and also demonstrate how considering subgraphs leads to a more powerful and interpretable method. Our method integrates with existing visual tools to facilitate interpretation. We also provide an implementation of our method, as well as code to reproduce all results at https://github.com/HectorRDB/Caldera_Recomb.


2019 ◽  
Vol 35 (14) ◽  
pp. i61-i70 ◽  
Author(s):  
Ivan Tolstoganov ◽  
Anton Bankevich ◽  
Zhoutao Chen ◽  
Pavel A Pevzner

Abstract Motivation The recently developed barcoding-based synthetic long read (SLR) technologies have already found many applications in genome assembly and analysis. However, although some new barcoding protocols are emerging and the range of SLR applications is being expanded, the existing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable to new barcoding technologies and new applications such as metagenomics or hybrid assembly. Results We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes algorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked cloudSPAdes across various barcoding technologies/applications and demonstrated that it improves on the state-of-the-art SLR assemblers in accuracy and speed. Availability and implementation Source code and installation manual for cloudSPAdes are available at https://github.com/ablab/spades/releases/tag/cloudspades-paper. Supplementary Information Supplementary data are available at Bioinformatics online.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S11) ◽  
Author(s):  
Arghya Kusum Das ◽  
Sayan Goswami ◽  
Kisung Lee ◽  
Seung-Jong Park

Abstract Background Long-read sequencing has shown the promises to overcome the short length limitations of second-generation sequencing by providing more complete assembly. However, the computation of the long sequencing reads is challenged by their higher error rates (e.g., 13% vs. 1%) and higher cost ($0.3 vs. $0.03 per Mbp) compared to the short reads. Methods In this paper, we present a new hybrid error correction tool, called ParLECH (Parallel Long-read Error Correction using Hybrid methodology). The error correction algorithm of ParLECH is distributed in nature and efficiently utilizes the k-mer coverage information of high throughput Illumina short-read sequences to rectify the PacBio long-read sequences.ParLECH first constructs a de Bruijn graph from the short reads, and then replaces the indel error regions of the long reads with their corresponding widest path (or maximum min-coverage path) in the short read-based de Bruijn graph. ParLECH then utilizes the k-mer coverage information of the short reads to divide each long read into a sequence of low and high coverage regions, followed by a majority voting to rectify each substituted error base. Results ParLECH outperforms latest state-of-the-art hybrid error correction methods on real PacBio datasets. Our experimental evaluation results demonstrate that ParLECH can correct large-scale real-world datasets in an accurate and scalable manner. ParLECH can correct the indel errors of human genome PacBio long reads (312 GB) with Illumina short reads (452 GB) in less than 29 h using 128 compute nodes. ParLECH can align more than 92% bases of an E. coli PacBio dataset with the reference genome, proving its accuracy. Conclusion ParLECH can scale to over terabytes of sequencing data using hundreds of computing nodes. The proposed hybrid error correction methodology is novel and rectifies both indel and substitution errors present in the original long reads or newly introduced by the short reads.


2019 ◽  
Vol 36 (5) ◽  
pp. 1374-1381 ◽  
Author(s):  
Antoine Limasset ◽  
Jean-François Flot ◽  
Pierre Peterlongo

Abstract Motivation Short-read accuracy is important for downstream analyses such as genome assembly and hybrid long-read correction. Despite much work on short-read correction, present-day correctors either do not scale well on large datasets or consider reads as mere suites of k-mers, without taking into account their full-length sequence information. Results We propose a new method to correct short reads using de Bruijn graphs and implement it as a tool called Bcool. As a first step, Bcool constructs a compacted de Bruijn graph from the reads. This graph is filtered on the basis of k-mer abundance then of unitig abundance, thereby removing most sequencing errors. The cleaned graph is then used as a reference on which the reads are mapped to correct them. We show that this approach yields more accurate reads than k-mer-spectrum correctors while being scalable to human-size genomic datasets and beyond. Availability and implementation The implementation is open source, available at http://github.com/Malfoy/BCOOL under the Affero GPL license and as a Bioconda package. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Lucile Broseus ◽  
Aubin Thomas ◽  
Andrew J. Oldfield ◽  
Dany Severac ◽  
Emeric Dubois ◽  
...  

ABSTRACTMotivationLong-read sequencing technologies are invaluable for determining complex RNA transcript architectures but are error-prone. Numerous “hybrid correction” algorithms have been developed for genomic data that correct long reads by exploiting the accuracy and depth of short reads sequenced from the same sample. These algorithms are not suited for correcting more complex transcriptome sequencing data.ResultsWe have created a novel reference-free algorithm called TALC (Transcription Aware Long Read Correction) which models changes in RNA expression and isoform representation in a weighted De-Bruijn graph to correct long reads from transcriptome studies. We show that transcription aware correction by TALC improves the accuracy of the whole spectrum of downstream RNA-seq applications and is thus necessary for transcriptome analyses that use long read technology.Availability and ImplementationTALC is implemented in C++ and available at https://gitlab.igh.cnrs.fr/lbroseus/[email protected]


2018 ◽  
Author(s):  
Mikhail Kolmogorov ◽  
Jeffrey Yuan ◽  
Yu Lin ◽  
Pavel. A. Pevzner

ABSTRACTThe problem of genome assembly is ultimately linked to the problem of the characterization of all repeat families in a genome as a repeat graph. The key reason the de Bruijn graph emerged as a popular short read assembly approach is because it offered an elegant representation of all repeats in a genome that reveals their mosaic structure. However, most algorithms for assembling long error-prone reads use an alternative overlap-layout-consensus (OLC) approach that does not provide a repeat characterization. We present the Flye algorithm for constructing the A-Bruijn (assembly) graph from long error-prone reads, that, in contrast to the k-mer-based de Bruijn graph, assembles genomes using an alignment-based A-Bruijn graph. In difference from existing assemblers, Flye does not attempt to construct accurate contigs (at least at the initial assembly stage) but instead simply generates arbitrary paths in the (unknown) assembly graph and further constructs an assembly graph from these paths. Counter-intuitively, this fast but seemingly reckless approach results in the same graph as the assembly graph constructed from accurate contigs. Flye constructs (overlapping) contigs with possible assembly errors at the initial stage, combines them into an accurate assembly graph, resolves repeats in the assembly graph using small variations between various repeat instances that were left unresolved during the initial assembly stage, constructs a new, less tangled assembly graph based on resolved repeats, and finally outputs accurate contigs as paths in this graph. We benchmark Flye against several state-of-the-art Single Molecule Sequencing assemblers and demonstrate that it generates better or comparable assemblies for all analyzed datasets.


2019 ◽  
Vol 35 (18) ◽  
pp. 3250-3256 ◽  
Author(s):  
Kingshuk Mukherjee ◽  
Bahar Alipanahi ◽  
Tamer Kahveci ◽  
Leena Salmela ◽  
Christina Boucher

Abstract Motivation Optical maps are high-resolution restriction maps (Rmaps) that give a unique numeric representation to a genome. Used in concert with sequence reads, they provide a useful tool for genome assembly and for discovering structural variations and rearrangements. Although they have been a regular feature of modern genome assembly projects, optical maps have been mainly used in post-processing step and not in the genome assembly process itself. Several methods have been proposed for pairwise alignment of single molecule optical maps—called Rmaps, or for aligning optical maps to assembled reads. However, the problem of aligning an Rmap to a graph representing the sequence data of the same genome has not been studied before. Such an alignment provides a mapping between two sets of data: optical maps and sequence data which will facilitate the usage of optical maps in the sequence assembly step itself. Results We define the problem of aligning an Rmap to a de Bruijn graph and present the first algorithm for solving this problem which is based on a seed-and-extend approach. We demonstrate that our method is capable of aligning 73% of Rmaps generated from the Escherichia coli genome to the de Bruijn graph constructed from short reads generated from the same genome. We validate the alignments and show that our method achieves an accuracy of 99.6%. We also show that our method scales to larger genomes. In particular, we show that 76% of Rmaps can be aligned to the de Bruijn graph in the case of human data. Availability and implementation The software for aligning optical maps to de Bruijn graph, omGraph is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/omGraph. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Pierre Morisse ◽  
Thierry Lecroq ◽  
Arnaud Lefebvre

AbstractMotivationThe recent rise of long read sequencing technologies such as Pacific Biosciences and Oxford Nanopore allows to solve assembly problems for larger and more complex genomes than what allowed short reads technologies. However, these long reads are very noisy, reaching an error rate of around 10 to 15% for Pacific Biosciences, and up to 30% for Oxford Nanopore. The error correction problem has been tackled by either self-correcting the long reads, or using complementary short reads in a hybrid approach, but most methods only focus on Pacific Biosciences data, and do not apply to Oxford Nanopore reads. Moreover, even though recent chemistries from Oxford Nanopore promise to lower the error rate below 15%, it is still higher in practice, and correcting such noisy long reads remains an issue.ResultsWe present HG-CoLoR, a hybrid error correction method that focuses on a seed-and-extend approach based on the alignment of the short reads to the long reads, followed by the traversal of a variable-order de Bruijn graph, built from the short reads. Our experiments show that HG-CoLoR manages to efficiently correct Oxford Nanopore long reads that display an error rate as high as 44%. When compared to other state-of-the-art long read error correction methods able to deal with Oxford Nanopore data, our experiments also show that HG-CoLoR provides the best trade-off between runtime and quality of the results, and is the only method able to efficiently scale to eukaryotic genomes.Availability and implementationHG-CoLoR is implemented is C++, supported on Linux platforms and freely available at https://github.com/morispi/HG-CoLoRContact: [email protected] informationSupplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Kingshuk Mukherjee ◽  
Massimiliano Rossi ◽  
Leena Salmela ◽  
Christina Boucher

Abstract Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there exists very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary method that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics' Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as Rmapper, and compare its performance against the assembler of Valouev et al. (2006) and Solve by Bionano Genomics on data from three genomes - E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al.(2006) only successfully ran on E. coli. Moreover, on the human genome Rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, RMAPPER is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper.


Sign in / Sign up

Export Citation Format

Share Document