scholarly journals Differential investment in visual and olfactory brain regions mirrors the sensory needs of a paper wasp social parasite and its host

2021 ◽  
Author(s):  
Allison N. Rozanski ◽  
Alessandro Cini ◽  
Taylor E. Lopreto ◽  
Kristine M. Gandia ◽  
Mark E. Hauber ◽  
...  

ABSTRACTObligate social parasites evolve traits to effectively locate and then exploit their hosts, whereas hosts have complex social behavioral repertoires, which include sensory recognition to reject potential conspecific intruders and heterospecific parasites. While social parasite and host behaviors have been studied extensively, less is known about how their sensory systems function to meet their specific selective pressures. Here, we compare investment in visual and olfactory brain regions in the paper wasp Polistes dominula, and its obligate social parasite P. sulcifer, to explore the link between sensory systems and brain plasticity. Our results show opposite and significant differences, consistent with their very different life-histories, in the sensory investments between these two closely-related species. Social parasites initially invest in the optic lobes to likely locate their hosts. After host colony usurpation, the parasite increases its brain volume, with specific investment in antennal lobes, which mirrors the behavioral switch from a usurping parasite to an integrated parasitic queen of the host colony. Contrastingly, hosts initially invest in the antennal lobes and sensory processing compared to social parasites, as predicted by their need to maintain social cohesion, allocate colony tasks, and recognize con- and heterospecific intruders. Host queens show a trend of higher investment in all sensory brain regions compared to workers, paralleling differences in task allocations. Our work provides novel insights into how intraspecific brain plasticity can facilitate the unique sensory adaptations needed to perform specific tasks by the host or to transition from searching to successful host exploitation by the social parasite.

Author(s):  
Allison N. Rozanski ◽  
Alessandro Cini ◽  
Taylor E. Lopreto ◽  
Kristine M. Gandia ◽  
Mark E. Hauber ◽  
...  

2020 ◽  
Author(s):  
Marek L Borowiec ◽  
Stefan P Cover ◽  
Christian Rabeling

Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 178 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life-history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups. The genus Formica originated in the Old World during the Oligocene (~30 Ma ago) and dispersed multiple times to the New World. Within Formica, the capacity for dependent colony foundation and temporary social parasitism arose once from a facultatively polygynous, independently colony founding ancestor. Within this parasitic clade, dulotic social parasitism evolved once from a facultatively temporary parasitic ancestor that likely practiced colony budding frequently. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from different facultative parasitic backgrounds in socially polymorphic organisms. In contrast to inquiline ant species in other genera, the high social parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.


2019 ◽  
Vol 374 (1769) ◽  
pp. 20180203 ◽  
Author(s):  
Jukka Suhonen ◽  
Jaakko J. Ilvonen ◽  
Tommi Nyman ◽  
Jouni Sorvari

Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants. We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.


2019 ◽  
Vol 3 ◽  
pp. 247054701987788
Author(s):  
Megan M. Hoch ◽  
Gaelle E. Doucet ◽  
Dominik A. Moser ◽  
Won Hee Lee ◽  
Katherine A. Collins ◽  
...  

Background Digital therapeutics such as cognitive–emotional training have begun to show promise for the treatment of major depressive disorder. Available clinical trial data suggest that monotherapy with cognitive–emotional training using the Emotional Faces Memory Task is beneficial in reducing depressive symptoms in patients with major depressive disorder. The aim of this study was to investigate whether Emotional Faces Memory Task training for major depressive disorder is associated with changes in brain connectivity and whether changes in connectivity parameters are related to symptomatic improvement. Methods Fourteen major depressive disorder patients received Emotional Faces Memory Task training as monotherapy over a six-week period. Patients were scanned at baseline and posttreatment to identify changes in resting-state functional connectivity and effective connectivity during emotional working memory processing. Results Compared to baseline, patients showed posttreatment reduced connectivity within resting-state networks involved in self-referential and salience processing and greater integration across the functional connectome at rest. Moreover, we observed a posttreatment increase in the Emotional Faces Memory Task-induced modulation of connectivity between cortical control and limbic brain regions, which was associated with clinical improvement. Discussion These findings provide initial evidence that cognitive–emotional training may be associated with changes in short-term plasticity of brain networks implicated in major depressive disorder. Conclusion Our findings pave the way for the principled design of large clinical and neuroimaging studies.


2000 ◽  
Vol 87 (4) ◽  
pp. 172-176 ◽  
Author(s):  
S. Turillazzi ◽  
M. F. Sledge ◽  
F. R. Dani ◽  
R. Cervo ◽  
A. Massolo ◽  
...  

2010 ◽  
Vol 80 (4) ◽  
pp. 683-688 ◽  
Author(s):  
I. Ortolani ◽  
L. Zechini ◽  
S. Turillazzi ◽  
R. Cervo

2014 ◽  
Vol 10 (4) ◽  
pp. 20140254 ◽  
Author(s):  
Michael J. Sheehan ◽  
Judy Jinn ◽  
Elizabeth A. Tibbetts

To be effective, signals must propagate through the environment and be detected by receivers. As a result, signal form evolves in response to both the constraints imposed by the transmission environment and receiver perceptual abilities. Little work has examined the extent to which signals may act as selective forces on receiver sensory systems to improve the efficacy of communication. If receivers benefit from accurate signal assessment, selection could favour sensory organs that improve discrimination of established signals. Here, we provide evidence that visual resolution coevolves with visual signals in Polistes wasps. Multiple Polistes species have variable facial patterns that function as social signals, whereas other species lack visual signals. Analysis of 19 Polistes species shows that maximum eye facet size is positively associated with both eye size and presence of visual signals. Relatively larger facets within the eye's acute zone improve resolution of small images, such as wasp facial signals. Therefore, sensory systems may evolve to optimize signal assessment. Sensory adaptations to facilitate signal detection may represent an overlooked area of the evolution of animal communication.


2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.


2019 ◽  
Author(s):  
Eduardo Estrada ◽  
ROBERTO COLOM

[Paper in press. Accepted for publication in Developmental Psychology. Copyright by APA] Throughout childhood and adolescence, humans experience marked changes in cortical structure and cognitive ability. Cortical thickness and surface area, in particular, have been associated with cognitive ability. Here we ask the question: What are the time-related associations between cognitive changes and cortical structure maturation. Identifying a developmental sequence requires multiple measurements of these variables from the same individuals across time. This allows capturing relations among the variables and, thus, finding whether: (a) developmental cognitive changes follow cortical structure maturation, (b) cortical structure maturation follows cognitive changes, or (c) both processes influence each other over time. 430 children and adolescents (age range = 6.01 – 22.28 years) completed the WASI battery and were MRI scanned at three time points separated by ≈ 2 years (mean age t1 = 10.60, SD = 3.58, mean age t2=12.63, SD=3.62, mean age t3=14.49, SD=3.55). Latent Change Score (LCS) models were applied to quantify age-related relationships among the variables of interest. Our results indicate that cortical and cognitive changes related to each other reciprocally. Specifically, the magnitude or rate of the change in each variable at any occasion –and not the previous level– was predictive of later changes. These results were replicated for brain regions selected according to the coordinates identified in the Basten et al.’s (2015) meta-analysis, to the Parieto-Frontal Integration Theory (P-FIT, Jung & Haier, 2007) and to the whole cortex. Potential implications regarding brain plasticity and cognitive enhancement are discussed.


Sign in / Sign up

Export Citation Format

Share Document