scholarly journals Environmental drivers of disease depend on host community context

2021 ◽  
Author(s):  
Fletcher W. Halliday ◽  
Mikko Jalo ◽  
Anna-Liisa Laine

AbstractPredicting disease risk in an era of unprecedented biodiversity and climate change is more challenging than ever, largely because when and where hosts are at greatest risk of becoming infected depends on complex relationships between hosts, parasites, and the environment. Theory predicts that host species characterized by fast-paced life-history strategies are more susceptible to infection and contribute more to transmission than their slow-paced counterparts. Hence, disease risk should increase as host community structure becomes increasingly dominated by fast-paced hosts. Theory also suggests that environmental gradients can alter disease risk, both directly, due to abiotic constraints on parasite replication and growth, and indirectly, by changing host community structure. What is more poorly understood, however, is whether environmental gradients can also alter the effect of host community structure on disease risk. We addressed these questions using a detailed survey of host communities and infection severity along a 1100m elevational gradient in southeastern Switzerland. Consistent with prior studies, increasing elevation directly reduced infection severity, which we attribute to abiotic constraints, and indirectly reduced infection severity via changes in host richness, which we attribute to encounter reduction. Communities dominated by fast pace-of-life hosts also experienced more disease. Finally, although elevation did not directly influence host community pace-of-life, the relationship between pace-of-life and disease was sensitive to elevation: increasing elevation weakened the relationship between host community pace-of-life and infection severity. This result provides the first field evidence, to our knowledge, that an environmental gradient can alter the effect of host community structure on infection severity.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fletcher W Halliday ◽  
Mikko Jalo ◽  
Anna-Liisa Laine

Quantifying the relative impact of environmental conditions and host community structure on disease is one of the greatest challenges of the 21st century, as both climate and biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host communities towards more fast-paced life-history strategies are predicted to increase disease, yet their independent and interactive effects on disease in natural communities remains unknown. Here, we address this challenge by surveying foliar disease symptoms in 220, 0.5 meter-diameter herbaceous plant communities along a 1100-meter elevational gradient. We find that increasing temperature associated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and reproduction, (2) determining which host species are present in a given location, and (3) strengthening the positive effect of host community pace-of-life on disease. These results provide the first field evidence, under natural conditions, that environmental gradients can alter how host community structure affects disease.


2016 ◽  
Vol 17 (1) ◽  
pp. 72-80 ◽  
Author(s):  
C. Guilherme Becker ◽  
David Rodriguez ◽  
Ana V. Longo ◽  
L. Felipe Toledo ◽  
Carolina Lambertini ◽  
...  

2016 ◽  
Author(s):  
Justin H. Baumann ◽  
Joseph E. Townsend ◽  
Travis A. Courtney ◽  
Hannah E. Aichelman ◽  
Sarah W. Davies ◽  
...  

AbstractCoral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6127 ◽  
Author(s):  
Martha Adriana Martínez-Olivas ◽  
Norma G. Jiménez-Bueno ◽  
Juan Alfredo Hernández-García ◽  
Carmine Fusaro ◽  
Marco Luna-Guido ◽  
...  

Background A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. Methods The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. Results A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. Discussion Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.


Author(s):  
M.I. Rosas-Jaco ◽  
S.X. Almeraya-Quintero ◽  
L.G. Guajardo-Hernández

Objective: Tourism has become the main engine of economic, social and environmental development in several countries, so promoting tourism awareness among tourists and the local population should be a priority. The present study aims to suggest a status of the research carried out on the topic of tourism awareness. Design / methodology / approach: The type of analysis is through a retrospective and exploratory bibliometric study. The analysis materials were scientific articles and a training manual published between 2000 and 2020, registered by Scopus, Emerald insight and Dialnet, using “tourism awareness” as the keyword. Results: When considering the three senses in which tourism awareness ought to operate, it is concluded that studies are more focused on the relationship and contact of the host community with the tourist. It is observed that four out of six articles in this sense consider that education, training, and government policies around tourism awareness should be developed in a better way in the destinations, in order to be an element that contributes to the development of communities and reduces poverty in developing countries. Study limitations / implications: It is considered a limitation not to include thesis dissertations. Findings / conclusions: It is necessary to make visible the importance of tourism awareness as a local development strategy for communities, in addition to including tourism awareness on the part of tourists.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1491-P
Author(s):  
APRILL DAWSON ◽  
EMMA GARACCI ◽  
MUKOSO N. OZIEH ◽  
REBEKAH J. WALKER ◽  
LEONARD E. EGEDE

2021 ◽  
Vol 29 ◽  
pp. S258-S259
Author(s):  
A.V. Perruccio ◽  
S. Zahid ◽  
C. Yip ◽  
J.D. Power ◽  
M. Canizares ◽  
...  

Oikos ◽  
2021 ◽  
Author(s):  
Olwyn Friesen ◽  
Robert Poulin ◽  
Clément Lagrue

2011 ◽  
Vol 278 (1720) ◽  
pp. 2970-2978 ◽  
Author(s):  
Andrea Swei ◽  
Richard S. Ostfeld ◽  
Robert S. Lane ◽  
Cheryl J. Briggs

The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis ) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks ( Ixodes pacificus —the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi . Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.


Sign in / Sign up

Export Citation Format

Share Document