scholarly journals Multi-omic characterization of the thermal stress phenome in the stony coral Montipora capitata

2021 ◽  
Author(s):  
Jananan S. Pathmanathan ◽  
Amanda Williams ◽  
Timothy G. Stephens ◽  
Xiaoyang Su ◽  
Eric N. Chiles ◽  
...  

AbstractWe used network methods to analyze transcriptomic and polar metabolomic data generated from the stress resistant stony coral Montipora capitata. Corals were exposed to ambient or thermal stress conditions over a five-week period that coincided with a mass spawning event of this species. Gene co-expression networks showed that the early thermal stress response involves downregulation of growth and DNA replication, whereas signaling and the immune response are strongly upregulated. Later stages are dominated by suppression of metabolite transport and biomineralization and enhanced expression of transcriptional regulators. Integration of gene-metabolite data demonstrates that the major outcome of the thermal treatment is activation of animal redox stress pathways with detoxification of reactive oxygen species being dominant. Differential regulation of the highly conserved cytochrome P450 gene family was of particular interest with downregulation of CYP1A1, involved in progesterone metabolism, potentially explaining the attenuated mass spawning observed during the sampling period.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12335
Author(s):  
Amanda Williams ◽  
Jananan S. Pathmanathan ◽  
Timothy G. Stephens ◽  
Xiaoyang Su ◽  
Eric N. Chiles ◽  
...  

Background Corals, which form the foundation of biodiverse reef ecosystems, are under threat from warming oceans. Reefs provide essential ecological services, including food, income from tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied the coral thermal stress response using network methods to analyze transcriptomic and polar metabolomic data generated from the Hawaiian rice coral Montipora capitata. Coral nubbins were exposed to ambient or thermal stress conditions over a 5-week period, coinciding with a mass spawning event of this species. The major goal of our study was to expand the inventory of thermal stress-related genes and metabolites present in M. capitata and to study gene-metabolite interactions. These interactions provide the foundation for functional or genetic analysis of key coral genes as well as provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to analyze the accumulation of sex hormones prior to and during mass spawning to understand how thermal stress may impact reproductive success in M. capitata. Methods M. capitata was exposed to thermal stress during its spawning cycle over the course of 5 weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and Gene Integration) to investigate molecular transitions and biochemical reactions. Results Our results reveal the complexity of the thermal stress phenome in M. capitata, which includes many genes involved in redox regulation, biomineralization, and reproduction. The size and number of modules in the gene co-expression networks expanded from the initial stress response to the onset of bleaching. The later stages involved the suppression of metabolite transport by the coral host, including a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment results in the activation of animal redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was provided by the downregulation of CYP-like genes and the irregular production of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are key components of the coral animal thermal stress phenome. Mass spawning was highly attenuated under thermal stress, suggesting that global climate change may negatively impact reproductive behavior in this species.


2020 ◽  
Vol 7 ◽  
Author(s):  
Sonora Meiling ◽  
Erinn M. Muller ◽  
Tyler B. Smith ◽  
Marilyn E. Brandt

Stony coral tissue loss disease (SCTLD) was first observed in the United States Virgin Islands in January 2019 on a reef at Flat Cay off the island of St. Thomas. A year after its emergence, the disease had spread to several reefs around St. Thomas causing significant declines in overall coral cover. Rates of tissue loss are an important metric in the study of coral disease ecology, as they can inform many aspects of etiology such as disease susceptibility and resistance among species, and provide critical parameters for modeling the effects of disease among heterogenous reef communities. The present study quantified tissue loss rates attributed to SCTLD among six abundant reef building species (Colpophyllia natans, Montastraea cavernosa, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis, and Porites astreoides). Field-based 3D models of diseased corals, taken approximately weekly, indicated that the absolute rates of tissue loss from SCTLD slowed through time, corresponding with the accumulation of thermal stress that led to mass bleaching. Absolute tissue loss rates were comparable among species prior to the bleaching event but diverged during and remained different after the bleaching event. Proportional tissue loss rates did not vary among species or through time, but there was considerable variability among M. cavernosa colonies. SCTLD poses a significant threat to reefs across the Caribbean due to its persistence through time, wide range of susceptible coral species, and unprecedented tissue loss rates. Intervention and management efforts should be increased during and immediately following thermal stress events in order maximize resource distribution when disease prevalence is decreased.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeremy B. Axworthy ◽  
Jacqueline L. Padilla-Gamiño

AbstractRising sea temperatures and increasing pollution threaten the fate of coral reefs and millions of people who depend on them. Some reef-building corals respond to thermal stress and subsequent bleaching with increases in heterotrophy, which may increase the risk of ingesting microplastics. Whether this heterotrophic plasticity affects microplastics ingestion or whether ingesting microplastics affects heterotrophic feeding in corals is unknown. To determine this, two coral species, Montipora capitata and Pocillopora damicornis, were exposed to ambient (~27 °C) and increased (~30 °C) temperature and then fed microplastics, Artemia nauplii, or both. Following thermal stress, both species significantly reduced feeding on Artemia but no significant decrease in microplastics ingestion was observed. Interestingly, P. damicornis only ingested microplastics when Artemia were also present, providing evidence that microplastics are not selectively ingested by this species and are only incidentally ingested when food is available. As the first study to examine microplastics ingestion following thermal stress in corals, our results highlight the variability in the risk of microplastics ingestion among species and the importance of considering multiple drivers to project how corals will be affected by global change.


2020 ◽  
Author(s):  
Amanda Williams ◽  
Eric N. Chiles ◽  
Dennis Conetta ◽  
Jananan S. Pathmanathan ◽  
Phillip A. Cleves ◽  
...  

SummaryCoral reef systems are under global threat due to warming and acidifying oceans1. Understanding the response of the coral holobiont to environmental change is crucial to aid conservation efforts. The most pressing problem is “coral bleaching”, usually precipitated by prolonged thermal stress that disrupts the algal symbiosis sustaining the holobiont2,3. We used metabolomics to understand how the coral holobiont metabolome responds to heat stress with the goal of identifying diagnostic markers prior to bleaching onset. We studied the heat tolerant Montipora capitata and heat sensitive Pocillopora acuta coral species from the Hawaiian reef system in Kāne’ohe Bay, O’ahu. Untargeted LC-MS analysis uncovered both known and novel metabolites that accumulate during heat stress. Among those showing the highest differential accumulation were a variety of co-regulated dipeptides present in both species. The structures of four of these compounds were determined (Arginine-Glutamine, Lysine-Glutamine, Arginine-Valine, and Arginine-Alanine). These dipeptides also showed differential accumulation in symbiotic and aposymbiotic (alga free) individuals of the sea anemone model Aiptasia4, suggesting their animal provenance and algal symbiont related function. Our results identify a suite of metabolites associated with thermal stress that can be used to diagnose coral health in wild samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas P. Jones ◽  
Lystina Kabay ◽  
Kathleen Semon Lunz ◽  
David S. Gilliam

AbstractRare species population dynamics can elucidate the resilience of an ecosystem. On coral reefs, climate change and local anthropogenic stressors are threatening stony coral persistence, increasing the need to assess vulnerable species locally. Here, we monitored the threatened pillar coral, Dendrogyra cylindrus, population in southeast Florida, USA, in relation to consecutive heat stress events in 2014 and 2015. In the fall of each year, D. cylindrus colonies bleached following intense thermal stress and by June 2020 all monitored colonies died from a white-syndrome type disease. This resulted in the ecological extinction of D. cylindrus in the Southeast Florida Coral Reef Ecosystem Conservation Area (ECA). White-syndrome type disease was first seen in February 2014 on four colonies (19% prevalence) near the major international port, Port Everglades and disease prevalence peaked in fall 2015 (58%). Disease prevalence increased with maximum water temperature, while disease related mortality increased with mean water temperature. Our findings suggest that thermal stress exacerbated underlying stony coral disease, resulting in an outbreak contributing to the ecological extirpation of D. cylindrus in the ECA. We suggest that stony coral resilience is severely compromised by chronic environmental disturbance which hinders community recovery.


2020 ◽  
Author(s):  
Jenna Dilworth ◽  
Carlo Caruso ◽  
Valerie A. Kahkejian ◽  
Andrew C. Baker ◽  
Crawford Drury

AbstractAs sea surface temperatures increase worldwide due to climate change, coral bleaching events are becoming more frequent and severe, resulting in reef degradation. Leveraging the inherent ability of reef-building corals to acclimatize to thermal stress via pre-exposure to protective temperature treatments may become an important tool in improving the resilience of coral reefs to rapid environmental change. We investigated whether historical bleaching phenotype, coral host genotype, and exposure to protective temperature treatments would affect the response of the Hawaiian coral Montipora capitata to natural thermal stress. Fragments were collected from colonies that demonstrated different bleaching responses during the 2014-2015 event in Kāne’ohe Bay (O’ahu, Hawai’i) and exposed to four different artificial temperature pre-treatments (and a control at ambient temperature). After recovery, fragments experienced a natural thermal stress event either in laboratory conditions or their native reef environment. Response to thermal stress was quantified by measuring changes in the algal symbionts’ photochemical efficiency, community composition, and relative density. Historical bleaching phenotype was reflected in stable differences in symbiont community composition, with historically bleached corals containing only Cladocopium symbionts and historically non-bleached corals having mixed symbiont communities dominated by Durusdinium. Mixed-community corals lost more Cladocopium than Cladocopium-only corals during the natural thermal stress event, and preferentially recovered with Durusdinium. Laboratory pre-treatments exposed corals to more thermal stress than anticipated, causing photochemical damage that varied significantly by genotype. While none of the treatments had a protective effect, temperature variation during treatments had a significant detrimental effect on photochemical efficiency during the thermal stress event. These results show that acclimatization potential is affected by fine-scale differences in temperature regime, host genotype, and relatively stable differences in symbiont community composition that underpin historical bleaching phenotypes in M. capitata.


2001 ◽  
Vol 120 (5) ◽  
pp. A153-A153
Author(s):  
M KLINE ◽  
Z ZANG ◽  
K PATEL ◽  
S FRENCH ◽  
H TSUKAMOTO

2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


Sign in / Sign up

Export Citation Format

Share Document