algal symbiont
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 47)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Michael T. Connelly ◽  
Crystal J. McRae ◽  
Pi-Jen Liu ◽  
Cecily E. Martin ◽  
Nikki Traylor-Knowles

Symbioses between eukaryotes and their associated microbial communities are fundamental processes that affect organisms’ ecology and evolution. A unique example of this is reef-building corals that maintain symbiotic associations with dinoflagellate algae (Symbiodiniaceae) and bacteria that affect coral health through various mechanisms. However, little is understood about how coral-associated bacteria communities affect holobiont heat tolerance. In this study, we investigated these interactions in four Pocillopora coral colonies belonging to three cryptic species by subjecting fragments to treatments with antibiotics intended to suppress the normal bacteria community, followed by acute heat stress. Separate treatments with only antibiotics or heat stress were conducted to compare the effects of individual stressors on holobiont transcriptome responses and microbiome shifts. Across all Pocillopora species examined, combined antibiotics and heat stress treatment significantly altered coral-associated bacteria communities and caused major changes in both coral and Cladocopium algal symbiont gene expression. Individually, heat stress impaired Pocillopora protein translation and activated DNA repair processes, while antibiotics treatments caused downregulation of Pocillopora amino acid and inorganic ion transport and metabolism genes and Cladocopium photosynthesis genes. Combined antibiotics-heat stress treatments caused synergistic effects on Pocillopora and Cladocopium gene expression including enhanced expression of oxidative stress response genes, programed cell death pathways and proteolytic enzymes that indicate an exacerbated response to heat stress following bacteria community suppression. Collectively, these results provide further evidence that corals and their Symbiodiniaceae and bacteria communities engage in highly coordinated metabolic interactions that are crucial for coral holobiont health, homeostasis, and heat tolerance.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12746
Author(s):  
Jih-Terng Wang ◽  
Yi-Ting Wang ◽  
Chaolun Allen Chen ◽  
Pei-Jei Meng ◽  
Kwee Siong Tew ◽  
...  

Global warming threatens reef-building corals with large-scale bleaching events; therefore, it is important to discover potential adaptive capabilities for increasing their temperature resistance before it is too late. This study presents two coral species (Platygyra verweyi and Isopora palifera) surviving on a reef having regular hot water influxes via a nearby nuclear power plant that exhibited completely different bleaching susceptibilities to thermal stress, even though both species shared several so-called “winner” characteristics (e.g., containing Durusdinium trenchii, thick tissue, etc.). During acute heating treatment, algal density did not decline in P. verweyi corals within three days of being directly transferred from 25 to 31 °C; however, the same treatment caused I. palifera to lose < 70% of its algal symbionts within 24 h. The most distinctive feature between the two coral species was an overwhelmingly higher constitutive superoxide dismutase (ca. 10-fold) and catalase (ca. 3-fold) in P. verweyi over I. palifera. Moreover, P. verweyi also contained significantly higher saturated and lower mono-unsaturated fatty acids, especially a long-chain saturated fatty acid (C22:0), than I. palifera, and was consistently associated with the symbiotic bacteria Endozoicomonas, which was not found in I. palifera. However, antibiotic treatment and inoculation tests did not support Endozoicomonas having a direct contribution to thermal resistance. This study highlights that, besides its association with a thermally tolerable algal symbiont, a high level of constitutive antioxidant enzymes in the coral host is crucial for coral survivorship in the more fluctuating and higher temperature environments.


2021 ◽  
Author(s):  
Timothy G Stephens ◽  
Emma L Strand ◽  
Amin R Mohamed ◽  
Amanda Williams ◽  
Eric N Chiles ◽  
...  

The response of coral reef ecosystems to anthropogenic climate change is driven by a complex interaction between location, stress history, species composition, and genetic background of the reef system. The latter two factors are particularly relevant when considering the different reproductive strategies used by coral species. We studied the stress resistant coral Montipora capitata and the more stress sensitive Pocillopora acuta from Kāneʻohe Bay, Oʻahu, Hawaiʻi. High-quality genome assemblies were generated for both species with the M. capitata assembly at chromosome-level resolution and the P. acuta assembly derived from a triploid colony, representing the first non-diploid genome generated from a coral. We report significant differences in the reproductive strategies of these coral species that not only affect the genetic structure of their populations in Kāneʻohe Bay, but also impact algal symbiont composition. Single-nucleotide polymorphism analysis shows that P. acuta comprises at least nine distinct genotypes in the bay with ancestral diploid and derived triploid lineages. In contrast, M. capitata colonies are diploids with nearly all being genotypically distinct. Genotype has a strong effect on gene expression profiles in these species, largely outweighing the effects of environmental stress. Our insights advance understanding of how reproductive strategy and ploidy can vary between different coral species and among local populations, how these factors constrain coral holobiont genetic diversity, and how genotype constrains genome-wide gene expression.


2021 ◽  
Author(s):  
Mariana Rocha de Souza ◽  
Carlo Caruso ◽  
Lupita Ruiz-Jones ◽  
Crawford Drury ◽  
Ruth D. Gates ◽  
...  

The survival of reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef building coral species in Hawaiʻi, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāneʻohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution, and the potential responses of corals to future environmental change.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Martina Prazeres ◽  
T. Edward Roberts ◽  
Shadrina Fildzah Ramadhani ◽  
Steve S. Doo ◽  
Christiane Schmidt ◽  
...  

Abstract Background Understanding the specificity and flexibility of the algal symbiosis-host association is fundamental for predicting how species occupy a diverse range of habitats. Here we assessed the algal symbiosis diversity of three species of larger benthic foraminifera from the genus Amphistegina and investigated the role of habitat and species identity in shaping the associated algal community. Results We used next-generation sequencing to identify the associated algal community, and DNA barcoding to identify the diatom endosymbionts associated with species of A. lobifera, A. lessonii, and A. radiata, collected from shallow habitats (< 15 m) in 16 sites, ranging from the Mediterranean Sea to French Polynesia. Next-generation sequencing results showed the consistent presence of Ochrophyta as the main algal phylum associated with all species and sites analysed. A significant proportion of phylotypes were classified as Chlorophyta and Myzozoa. We uncovered unprecedented diversity of algal phylotypes found in low abundance, especially of the class Bacillariophyta (i.e., diatoms). We found a significant influence of sites rather than host identity in shaping algal communities in all species. DNA barcoding revealed the consistent presence of phylotypes classified within the order Fragilariales as the diatoms associated with A. lobifera and A. lessonii, while A. radiata specimens host predominately diatoms of the order Triceratiales. Conclusions We show that local habitat is the main factor influencing the overall composition of the algal symbiont community. However, host identity and the phylogenetic relationship among hosts is relevant in shaping the specific endosymbiont diatom community, suggesting that the relationship between diatom endosymbiont and hosts plays a crucial role in the evolutionary history of the genus Amphistegina. The capacity of Amphistegina species to associate with a diverse array of diatoms, and possibly other algal groups, likely underpins the ecological success of these crucial calcifying organisms across their extensive geographic range.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shelby R. Marhoefer ◽  
Kyall R. Zenger ◽  
Jan M. Strugnell ◽  
Murray Logan ◽  
Madeleine J. H. van Oppen ◽  
...  

Strong population-by-habitat interactions across environmental gradients arise from genetic adaptation or acclimatization and represents phenotypic variation required for populations to respond to changing environmental conditions. As such, patterns of adaptation and acclimatization of reef-building corals are integral to predictions of the future of coral reefs under climate warming. The common brooding coral, Pocillopora damicornis, exhibits extensive differences in host genetic and microbial symbiont community composition between depth habitats at Heron Island in the southern Great Barrier Reef, Australia. An 18-month reciprocal field transplant experiment was undertaken to examine the environmental and genetic drivers behind variation in survival, weight gain, heat tolerance and algal symbiont community between the reef flat and slope habitats. We observed population-by-habitat interactions for in situ partial mortality and weight gain, where trait-related fitness of natives was greater than transplants in most cases, consistent with local adaptation. On average, flat colonies transplanted to the slope had a relatively low partial mortality but minimal weight gain, whereas slope colonies transplanted to the flat had relatively high partial mortality and average weight gain. Experimental heat tolerance was always higher in colonies sourced from the flat, but increased when slope colonies were transplanted to the flat, providing evidence of acclimatization in these colonies. The performance of certain slope to flat transplants may have been driven by each colony’s algal symbiont (Symbiodiniaceae) community, and flat variants were observed in a small number of slope colonies that either had a fixed flat composition before transplantation or shuffled after transplantation. Host genotypes of previously identified genetic outlier loci could not predict survival following transplantation, possibly because of low sample size and/or polygenic basis to the traits examined. Local environmental conditions and Symbiodiniaceae composition may provide insight into the adaptive potential to changing environmental conditions.


2021 ◽  
Author(s):  
Lydia J. Baker ◽  
Hannah G. Reich ◽  
Sheila A. Kitchen ◽  
J. Grace Klinges ◽  
Hanna R. Koch ◽  
...  

AbstractThe symbiont “Candidatus Aquarickettsia rohweri” infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid (“Ac. prolifera”). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral’s algal symbiont (Symbiodinium “fitti”). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.


2021 ◽  
Vol 6 (2) ◽  
pp. 66161
Author(s):  
Imam Bachtiar ◽  
Muhammad Irsyad Abiyusfi Ghafari ◽  
Ibadur Rahman ◽  
Baiq Hilda Astriana

Genetic diversity has an important role in the stability of coral populations in coping with disturbances. In the last three bleaching events, the coral Echinopora lamellosa survived better in the eastern- than the western- Lombok waters that are not related to algal symbiont diversity. The present study aimed to assess the genetic diversity of E. lamellosa from the two locations in the Lombok waters. The ITS1-5.8S-ITS2 (whole ITS region) marker was used to identify and to determine the genetic structure, genetic variation, and demographic pattern of E. lamellosa. The results showed that E. lamellosa of the two locations are two different populations. The haplotype diversity was very high indicating a predominance of sexual reproduction mode for both eastern and western populations. The phylogenetic topology suggests there is possible connectivity between populations, whereas the haplotype network exhibits a restricted gene flow between the two populations.  The results suggest that the present E. lamellosa populations were from both surviving colonies and new recruitment of long-distance larvae. Both population likely shares the same larvae supply brought from source-reefs in the Flores Sea or Makassar Strait by the Indonesian Throughflow. The present and previous studies revealed that genetic diversity alone yet to explain the resistance of E. lamellosa in eastern and western Lombok waters.   


2021 ◽  
Author(s):  
Colleen B Bove ◽  
Sarah W. Davies ◽  
Justin B Ries ◽  
James Umbanhowar ◽  
Bailey C Thomasson ◽  
...  

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal endosymbionts ise particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of the coral holobiont (animal host + algal symbiont) of three Caribbean coral species from two reef environments after exposure to simulated ocean warming (28, 31 °C), acidification (300 - 3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how multiple coral holobiont physiological parameters respond to ocean acidification and warming. Our results demonstrate significantly diminishing holobiont physiology in S. siderea and P. astreoides in response to projected ocean acidification, while future warming elicited severe declines in P. strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population has the capacity to modulate their physiology in response to changing conditions, but at a cost to the holobiont. Plasticity of P. strigosa and P. astreoides was not clearly different between natal reef environments, however, temperature evoked a greater plastic response in both species. Interestingly, while these species exhibit unique physiological responses to ocean acidification and warming, when data from all three species are modeled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent than previously assumed. The variety of responses to global change we observe across species will likely manifest in altered Caribbean reef assemblages in the future.


2021 ◽  
Author(s):  
Cherry Gao ◽  
Melissa Garren ◽  
Kevin Penn ◽  
Vicente I. Fernandez ◽  
Justin R. Seymour ◽  
...  

AbstractElevated seawater temperatures have contributed to the rise of coral disease mediated by bacterial pathogens, such as the globally distributed Vibrio coralliilyticus, which utilizes coral mucus as a chemical cue to locate stressed corals. However, the physiological events in the pathogens that follow their entry into the coral host environment remain unknown. Here, we present simultaneous measurements of the behavioral and transcriptional responses of V. coralliilyticus BAA-450 incubated in coral mucus. Video microscopy revealed a strong and rapid chemokinetic behavioral response by the pathogen, characterized by a two-fold increase in average swimming speed within 6 min of coral mucus exposure. RNA sequencing showed that this bacterial behavior was accompanied by an equally rapid differential expression of 53% of the genes in the V. coralliilyticus genome. Specifically, transcript abundance 10 min after mucus exposure showed upregulation of genes involved in quorum sensing, biofilm formation, and nutrient metabolism, and downregulation of flagella synthesis and chemotaxis genes. After 60 min, we observed upregulation of genes associated with virulence, including zinc metalloproteases responsible for causing coral tissue damage and algal symbiont photoinactivation, and secretion systems that may export toxins. Together, our results suggest that V. coralliilyticus employs a suite of behavioral and transcriptional responses to rapidly shift into a distinct infection mode within minutes of exposure to the coral microenvironment.


Sign in / Sign up

Export Citation Format

Share Document