scholarly journals Microplastics ingestion and heterotrophy in thermally stressed corals

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeremy B. Axworthy ◽  
Jacqueline L. Padilla-Gamiño

AbstractRising sea temperatures and increasing pollution threaten the fate of coral reefs and millions of people who depend on them. Some reef-building corals respond to thermal stress and subsequent bleaching with increases in heterotrophy, which may increase the risk of ingesting microplastics. Whether this heterotrophic plasticity affects microplastics ingestion or whether ingesting microplastics affects heterotrophic feeding in corals is unknown. To determine this, two coral species, Montipora capitata and Pocillopora damicornis, were exposed to ambient (~27 °C) and increased (~30 °C) temperature and then fed microplastics, Artemia nauplii, or both. Following thermal stress, both species significantly reduced feeding on Artemia but no significant decrease in microplastics ingestion was observed. Interestingly, P. damicornis only ingested microplastics when Artemia were also present, providing evidence that microplastics are not selectively ingested by this species and are only incidentally ingested when food is available. As the first study to examine microplastics ingestion following thermal stress in corals, our results highlight the variability in the risk of microplastics ingestion among species and the importance of considering multiple drivers to project how corals will be affected by global change.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica L. Bergman ◽  
William Leggat ◽  
Tracy D. Ainsworth

Coral bleaching events in the marine environment are now occurring globally, and the frequency and severity of these events are increasing. Critically, these events can cause the symbiosis between Symbiodiniaceae and their coral hosts to break down, but how the microbial community within the coral responds to bleaching is still equivocal. We investigated the impact of thermal stress exposure on the meta-organism responses of the generalist scleractinian coral species Pocillopora damicornis. Using mesocosms to recreate warming scenarios previously observed at Heron Island, we show that P. damicornis symbiont densities and photophysiological parameters declined at a similar rate under thermal stress regardless of the length of pre-bleaching thermal stress, defined here as temperatures above the monthly maximum mean (MMM) for Heron Island but below the local bleaching threshold (MMM + 2°C). However, we find that the P. damicornis microbiome remains stable over time regardless of the degree of thermal stress and the accumulation of pre-bleaching thermal stress. Our study therefore suggests that while P. damicornis is physiologically impacted by bleaching temperatures, the microbial community identified through 16S rRNA sequencing remains unchanged at the ASV level throughout bleaching. Understanding the capacity of a generalist species to withstand bleaching events is imperative to characterizing what coral species will exist on coral reefs following disturbances, as it has been suggested that the success of environmental generalist species may simplify community structure and lead to changes in biodiversity following environmental disturbance.


2020 ◽  
Author(s):  
Amanda Williams ◽  
Eric N. Chiles ◽  
Dennis Conetta ◽  
Jananan S. Pathmanathan ◽  
Phillip A. Cleves ◽  
...  

SummaryCoral reef systems are under global threat due to warming and acidifying oceans1. Understanding the response of the coral holobiont to environmental change is crucial to aid conservation efforts. The most pressing problem is “coral bleaching”, usually precipitated by prolonged thermal stress that disrupts the algal symbiosis sustaining the holobiont2,3. We used metabolomics to understand how the coral holobiont metabolome responds to heat stress with the goal of identifying diagnostic markers prior to bleaching onset. We studied the heat tolerant Montipora capitata and heat sensitive Pocillopora acuta coral species from the Hawaiian reef system in Kāne’ohe Bay, O’ahu. Untargeted LC-MS analysis uncovered both known and novel metabolites that accumulate during heat stress. Among those showing the highest differential accumulation were a variety of co-regulated dipeptides present in both species. The structures of four of these compounds were determined (Arginine-Glutamine, Lysine-Glutamine, Arginine-Valine, and Arginine-Alanine). These dipeptides also showed differential accumulation in symbiotic and aposymbiotic (alga free) individuals of the sea anemone model Aiptasia4, suggesting their animal provenance and algal symbiont related function. Our results identify a suite of metabolites associated with thermal stress that can be used to diagnose coral health in wild samples.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba9958
Author(s):  
Maxence Guillermic ◽  
Louise P. Cameron ◽  
Ilian De Corte ◽  
Sambuddha Misra ◽  
Jelle Bijma ◽  
...  

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.


Author(s):  
Mauro Giovanni Zucconi ◽  
Levy D. Obonaga ◽  
Edgardo Londoño-Cruz

Coral reefs are very important and highly biodiverse ecosystems that are exposed to various stressors, including biological ones, such as parasitism and corallivory – the direct consumption of coral tissue by a predator. Knowledge on the effects of corallivory on the coral reefs in the Colombian Pacific is poor. Therefore a study was set up to quantify the abundance of and the corallivory rate by the snail Jenneria pustulata in La Azufrada and Playa Blanca coral reefs (Gorgona Island, Colombia). Snails were manually sampled from the underside of Pocillopora sp. colonies and measured in situ to determine their size structure for each reef. To measure possible damage caused by corallivory, several snails were kept under controlled laboratory conditions for 24 h. Snail sizes and corallivory varied significantly between reefs (P=0.0001; P«0.001). Snails from Playa Blanca were larger than snails from La Azufrada, while corallivory was higher in La Azufrada than in Playa Blanca. Although corallivory rates by J. pustulata are smaller than rates reported for other predators in different coral species, it is recommended to continue this kind of investigations in order to increase the knowledge on biological dynamics of this species and to understand how they affect the reefs at Gorgona Island.


2021 ◽  
Vol 17 (1) ◽  
pp. 35-45
Author(s):  
Dicky Sahetapy ◽  
Laura Siahainenia ◽  
Debby A J Selanno ◽  
Johannes M S Tetelepta ◽  
Novianty C Tuhumury

Coral reef is one of the important coastal ecosystems that have high biodiversity. This study aims to analyze the composition of the taxa and the distribution of coral species, the ecological index of coral communities and the status of coral reefs. The research was conducted from April-May 2019 in the coastal waters of Hukurila Village, South Leitimur District, Ambon City. Collecting coral data by using the Line Intercept Transect (LIT) method. Determination of coral reef condition based on percent data (value) of coral reef cover. During the study, 116 species of stony coral from 49 genera and 16 families were found, which 50 species of them are protected and 23 species of ornamental coral. The similarity index of stony coral species between coral reef locations ranges from 0.52-0.76 or there is the similarity of stony coral species between locations coral reef in the amount of 52-76%. The coral reefs of Hukurila Village have high diversity of coral species, with a low dominance of coral species in the community, and the compatibility of coral species in the community is classified as stable. Acropora corals contributed a low covering percent value (9.98%), while Non-Acropora corals contributed a relatively high percent of covering value (43.56%). The status of coral reefs between locations in the coastal waters of Hukurila Village is in the criteria of good (healthy).   ABSTRAK Terumbu karang merupakan salah satu ekosistem pesisir penting yang emiliki kenanekaragaman hayati tinggi. Penelitian ini bertujuan untuk menganalisis komposisi taksa dan sebaran spesies karang, indeks ekologi kominitas karang dan status terumbu karang. Penelitian dilakukan dari April-Mei 2019 di perairan pesisir Negeri Hukurila Kecamatan Leitimur Selatan Kota Ambon. Pengumpulan data karang menggunakan metode Line Intercept Transect (LIT). Penentuan kondisi terumbu karang berdasarkan data (nilai) persen penutupan karang batu. Selama penelitian ditemukan 116 spesies karang batu dari 49 genera dan 16 famili, dimana 50 spesies diantaranya dilindungi dan 23 spesies karang hias. Indeks similaritas spesies karang batu antar stasiun terumbu karang berkisar antara 0,52-0,76 atau terdapat kesamaan spesies karang batu antar lokasi terumbu karang sebesar 52-76%. Terumbu karang Negeri Hukurila memiliki diversitas spesies karang tinggi, dengan dominansi spesies karang rendah dalam komunitas, dan keserasian spesies karang dalam komunitas tergolong stabil. Karang Acropora memberi kontribusi nilai persen penutupan rendah (9,98%), sementara karang Non-Acropora memberi kontribusi nilai persen penutupan karang batu relatif tinggi (43,56%). Status terumbu karang antar stasiun terumbu perairan pesisir Negeri Hukurila berada dalam kriteria baik (sehat).   Kata kunci: terumbu, karang batu, keragaman spesies, kesamaan, persen penutupan


2021 ◽  
Vol 8 ◽  
Author(s):  
Juan L. Torres-Pérez ◽  
Carlos E. Ramos-Scharrón ◽  
William J. Hernández ◽  
Roy A. Armstrong ◽  
Maritza Barreto-Orta ◽  
...  

Land-based sediment stress represents a threat to many coral reefs in Puerto Rico primarily as a result of unrestricted land cover/land use changes and poor best management practices. The effects of such stresses have been documented along most coasts around the island. However, little attention has been paid to reefs located on the north coast, and very little is known about their composition and current state. Here, we present a study characterizing riverine inputs, water quality conditions, and benthic composition of two previously undescribed coral reefs (Tómbolo and Machuca reefs) located just eastward of the Río Grande de Manatí outlet in north-central Puerto Rico. This study utilizes a time series of remotely sensed ocean color products [diffuse vertical attenuation coefficient at 490 nm (Kd490) and chlorophyll-a concentration (Chl-a) estimated with data from the Visible Infrared Imaging Radiometer Suite (VIIRS)] to characterize water quality in this coastal region. In general, the months with relatively high mean daily river streamflow also coincide with months having the highest proportion of eastward wave direction, which can promote the eastward influence of river waters toward the two coral reefs sites. Kd490 and Chl-a showed a higher riverine influence closer to the watershed outlet. Kd490 and Chl-a monthly peaks also coincide with river streamflow highs, particularly at those pixels closer to shore. Tómbolo Reef, located farther eastward of the river outlet, shows a well-developed primary reef framework mainly composed of threatened reef-building species (Acropora palmata, Pseudodiploria) and high coral cover (19–51%). The benthos of Machuca Reef, located closer to the river outlet, is dominated by macroalgae with a significantly lower coral cover (0.2–2.7%) mainly composed of “weedy” coral species (Porites astreoides and Siderastrea radians). Cover of major benthic components correlates with distance from the river outlet, and with gradients in Kd490 and Chl-a, with higher coral cover and lower macroalgal cover farther from the river outlet. Coral cover at Tómbolo Reef is higher than what has been reported for similar sites around Puerto Rico and other Caribbean islands showing its ecological importance, and as up until now, an unrecognized potential refuge of reef-building threatened coral species.


2017 ◽  
Author(s):  
Lalita Putchim ◽  
Niphon Phongsuwan ◽  
Chaimongkol Yaemarunpattana ◽  
Nalinee Thongtham ◽  
Claudio Richter

The bleaching susceptibility of 28 coral taxa around southern Phuket was examined in four natural major bleaching events, in 1991, 1995, 2010, and 2016. Surveys were conducted by line intercept and belt transect methods. All coral colonies were identified to genus or species-level and their pigmentation status was assessed as: (1) fully pigmented (i.e. no bleaching), (2) pale (loss of colour), (3) fully bleached, and (4) recently dead as a result of bleaching-induced mortality. Bleaching and mortality indices were calculated to compare bleaching susceptibility among coral taxa. In 2016 some of the formerly bleaching susceptible coral taxa (e.g. Acropora, Montipora, Echinopora, and Pocillopora damicornis) showed far greater tolerance to elevated sea water temperature than in previous years. In P. damicornis the higher bleaching resistance encompassed all sizes from juveniles (<5cm) to adults (>30cm). In contrast, some of the formerly bleaching-resistant corals (e.g. the massive Porites, Goniastrea, Dipsastraea, and Favites) became more susceptible to bleaching over repeated thermal stress events. Our results support the hypothesis that some of the fast-growing branching corals (Acropora, Montipora, and Pocillopora) may have life-history traits that lead to more rapid adaptation to a changed environment than certain growing massive species.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 455
Author(s):  
Ellen Muller ◽  
Werner de Gier ◽  
Harry A. ten Hove ◽  
Godfried W. N. M. van Moorsel ◽  
Bert W. Hoeksema

Christmas tree worms (Serpulidae: Spirobranchus) occur in shallow parts of coral reefs, where they live as associates of a large number of stony coral species [...]


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1984 ◽  
Author(s):  
Thomas Swierts ◽  
Mark JA Vermeij

Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20192214 ◽  
Author(s):  
Laura E. Richardson ◽  
Nicholas A. J. Graham ◽  
Andrew S. Hoey

Rapid and unprecedented ecological change threatens the functioning and stability of ecosystems. On coral reefs, global climate change and local stressors are reducing and reorganizing habitat-forming corals and associated species, with largely unknown implications for critical ecosystem functions such as herbivory. Herbivory mediates coral–algal competition, thereby facilitating ecosystem recovery following disturbance such as coral bleaching events or large storms. However, relationships between coral species composition, the distribution of herbivorous fishes and the delivery of their functional impact are not well understood. Here, we investigate how herbivorous fish assemblages and delivery of two distinct herbivory processes, grazing and browsing, differ among three taxonomically distinct, replicated coral habitats. While grazing on algal turf assemblages was insensitive to different coral configurations, browsing on the macroalga Laurencia cf. obtusa varied considerably among habitats, suggesting that different mechanisms may shape these processes. Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.


Sign in / Sign up

Export Citation Format

Share Document