scholarly journals Genome-wide Detection of Cytosine Methylations in Plant from Nanopore sequencing data using Deep Learning

2021 ◽  
Author(s):  
Peng Ni ◽  
Neng Huang ◽  
Fan Nie ◽  
Jun Zhang ◽  
Zhi Zhang ◽  
...  

AbstractMethylation states of DNA bases can be detected from native Nanopore reads directly. At present, there are many computational methods that can detect 5mCs in CpG contexts accurately by Nanopore sequencing. However, there is currently a lack of methods to detect 5mCs in non-CpG contexts. In this study, we propose a computational pipeline which can detect 5mC sites in both CpG and non-CpG contexts of plant genomes by using Nanopore sequencing. And we sequenced two model plants Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa) by using Nanopore sequencing and bisulfite sequencing. The results of our proposed pipeline in the two plants achieved high correlations with bisulfite sequencing: above 0.98, 0.96, 0.85 for CpG, CHG, and CHH (H indicates A, C or T) motif, respectively. Our proposed pipeline also achieved high performance on Brassica nigra (B. nigra). Experiments also showed that our proposed pipeline can achieve high performance even with low coverage of reads. Moreover, by using Nanopore sequencing, our proposed pipeline is capable of profiling methylation of more cytosines than bisulfite sequencing.

2021 ◽  
Author(s):  
Hasindu Gamaarachchi ◽  
Hiruna Samarakoon ◽  
Sasha P. Jenner ◽  
James M Ferguson ◽  
Timothy G. Amos ◽  
...  

Nanopore sequencing is an emerging genomic technology with great potential. However, the storage and analysis of nanopore sequencing data have become major bottlenecks preventing more widespread adoption in research and clinical genomics. Here, we elucidate an inherent limitation in the file format used to store raw nanopore data, known as FAST5, that prevents efficient analysis on high-performance computing (HPC) systems. To overcome this we have developed SLOW5, an alternative file format that permits efficient parallelisation and, thereby, acceleration of nanopore data analysis. For example, we show that using SLOW5 format, instead of FAST5, reduces the time and cost of genome-wide DNA methylation profiling by an order of magnitude on common HPC systems, and delivers consistent improvements on a wide range of different architectures. With a simple, accessible file structure and a ~25% reduction in size compared to FAST5, SLOW5 format will deliver substantial benefits to all areas of the nanopore community.


2021 ◽  
Author(s):  
Hasindu Gamaarachchi ◽  
Hiruna Samarakoon ◽  
Sasha Jenner ◽  
James Ferguson ◽  
Timothy Amos ◽  
...  

Abstract Nanopore sequencing is an emerging genomic technology with great potential. However, the storage and analysis of nanopore sequencing data have become major bottlenecks preventing more widespread adoption in research and clinical genomics. Here, we elucidate an inherent limitation in the file format used to store raw nanopore data – known as FAST5 – that prevents efficient analysis on high-performance computing (HPC) systems. To overcome this we have developed SLOW5, an alternative file format that permits efficient parallelisation and, thereby, acceleration of nanopore data analysis. For example, we show that using SLOW5 format, instead of FAST5, reduces the time and cost of genome-wide DNA methylation profiling by an order of magnitude on common HPC systems, and delivers consistent improvements on a wide range of different architectures. With a simple, accessible file structure and a ~25% reduction in size compared to FAST5, SLOW5 format will deliver substantial benefits to all areas of the nanopore community.


2020 ◽  
Vol 36 (15) ◽  
pp. 4369-4371
Author(s):  
Andrew Whalen ◽  
Gregor Gorjanc ◽  
John M Hickey

Abstract Summary AlphaFamImpute is an imputation package for calling, phasing and imputing genome-wide genotypes in outbred full-sib families from single nucleotide polymorphism (SNP) array and genotype-by-sequencing (GBS) data. GBS data are increasingly being used to genotype individuals, especially when SNP arrays do not exist for a population of interest. Low-coverage GBS produces data with a large number of missing or incorrect naïve genotype calls, which can be improved by identifying shared haplotype segments between full-sib individuals. Here, we present AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib families. It performs imputation using a two-step approach. In the first step, it phases and imputes parental genotypes based on the segregation states of their offspring (i.e. which pair of parental haplotypes the offspring inherited). In the second step, it phases and imputes the offspring genotypes by detecting which haplotype segments the offspring inherited from their parents. With a series of simulations, we find that AlphaFamImpute obtains high-accuracy genotypes, even when the parents are not genotyped and individuals are sequenced at <1x coverage. Availability and implementation AlphaFamImpute is available as a Python package from the AlphaGenes website http://www.AlphaGenes.roslin.ed.ac.uk/AlphaFamImpute. Supplementary information Supplementary data are available at Bioinformatics online.


Leukemia ◽  
2021 ◽  
Author(s):  
Elisabeth R. Wilson ◽  
Nichole M. Helton ◽  
Sharon E. Heath ◽  
Robert S. Fulton ◽  
Jacqueline E. Payton ◽  
...  

AbstractRecurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified ~4000 focal regions that were uniquely hypermethylated in IDHmut samples vs. normal CD34+ cells and other AMLs. These regions had modest hypermethylation in AMLs with biallelic TET2 mutations, and levels of 5-hydroxymethylation that were diminished in IDH and TET-mutant samples, indicating that this hypermethylation results from inhibition of TET-mediated demethylation. Focal hypermethylation in IDHmut AMLs occurred at regions with low methylation in CD34+ cells, implying that DNA methylation and demethylation are active at these loci. AML samples containing IDH and DNMT3AR882 mutations were significantly less hypermethylated, suggesting that IDHmut-associated hypermethylation is mediated by DNMT3A. IDHmut-specific hypermethylation was highly enriched for enhancers that form direct interactions with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between DNA methylation and demethylation, and that disruption of these pathways at enhancers may contribute to AML pathogenesis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1847-1847 ◽  
Author(s):  
Adam Burns ◽  
David Robert Bruce ◽  
Pauline Robbe ◽  
Adele Timbs ◽  
Basile Stamatopoulos ◽  
...  

Abstract Introduction Chronic Lymphocytic Leukaemia (CLL) is the most prevalent leukaemia in the Western world and characterised by clinical heterogeneity. IgHV mutation status, mutations in the TP53 gene and deletions of the p-arm of chromosome 17 are currently used to predict an individual patient's response to therapy and give an indication as to their long-term prognosis. Current clinical guidelines recommend screening patients prior to initial, and any subsequent, treatment. Routine clinical laboratory practices for CLL involve three separate assays, each of which are time-consuming and require significant investment in equipment. Nanopore sequencing offers a rapid, low-cost alternative, generating a full prognostic dataset on a single platform. In addition, Nanopore sequencing also promises low failure rates on degraded material such as FFPE and excellent detection of structural variants due to long read length of sequencing. Importantly, Nanopore technology does not require expensive equipment, is low-maintenance and ideal for patient-near testing, making it an attractive DNA sequencing device for low-to-middle-income countries. Methods Eleven untreated CLL samples were selected for the analysis, harbouring both mutated (n=5) and unmutated (n=6) IgHV genes, seven TP53 mutations (five missense, one stop gain and one frameshift) and two del(17p) events. Primers were designed to amplify all exons of TP53, along with the IgHV locus, and each primer included universal tails for individual sample barcoding. The resulting PCR amplicons were prepared for sequencing using a ligation sequencing kit (SQK-LSK108, Oxford Nanopore Technologies, Oxford, UK). All IgHV libraries were pooled and sequenced on one R9.4 flowcell, with the TP53 libraries pooled and sequenced on a second R9.4 flowcell. Whole genome libraries were prepared from 400ng genomic DNA for each sample using a rapid sequencing kit (SQK-RAD004, Oxford Nanopore Technologies, Oxford, UK), and each sample sequenced on individual flowcells on a MinION mk1b instrument (Oxford Nanopore Technologies, Oxford, UK). We developed a bespoke bioinformatics pipeline to detect copy-number changes, TP53 mutations and IgHV mutation status from the Nanopore sequencing data. Results were compared to short-read sequencing data obtained earlier by targeted deep sequencing (MiSeq, Illumina Inc, San Diego, CA, USA) and whole genome sequencing (HiSeq 2500, Illumina Inc, San Diego CA, USA). Results Following basecalling and adaptor trimming, the raw data were submitted to the IMGT database. In the absence of error correction, it was possible to identify the correct VH family for each sample; however the germline homology was not sufficient to differentiate between IgHVmut and IgHVunmut CLL cases. Following bio-informatic error correction and consensus building, the percentage to germline homology was the same as that obtained from short-read sequencing and nanopore sequencing also called the same productive rearrangements in all cases. A total of 77 TP53 variants were identified, including 68 in non-coding regions, and three synonymous SNVs. The remaining 6 were predicted to be functional variants (eight missense and two stop-gains) and had all been identified in early MiSeq targeted sequencing. However, the frameshift mutation was not called by the analysis pipeline, although it is present in the aligned reads. Using the low-coverage WGS data, we were able to identify del(17p) events, of 19Mb and 20Mb length, in both patients with high confidence. Conclusions Here we demonstrate that characterization of the IgHV locus in CLL cases is possible using the MinION platform, provided sufficient downstream analysis, including error correction, is applied. Furthermore, somatic SNVs in TP53 can be identified, although similar to second generation sequencing, variant calling of small insertions and deletions is more problematic. Identification of del(17p) is possible from low-coverage WGS on the MinION and is inexpensive. Our data demonstrates that Nanopore sequencing can be a viable, patient-near, low-cost alternative to established screening methods, with the potential of diagnostic implementation in resource-poor regions of the world. Disclosures Schuh: Giles, Roche, Janssen, AbbVie: Honoraria.


2017 ◽  
Author(s):  
Rahul Pisupati ◽  
Ilka Reichardt ◽  
Ümit Seren ◽  
Pamela Korte ◽  
Viktoria Nizhynska ◽  
...  

AbstractLarge-scale studies such as the ​Arabidopsis thaliana 1001 Genomes Project aim to understand genetic variation in populations and link it to phenotypic variation. Such studies require routine genotyping of stocks to avoid sample contamination and mix-ups. To genotype samples efficiently and economically, sequencing must be inexpensive a​nd data processing simple. Here we present SNPmatch, a tool which identifies the most likely strain (inbred line, or “accession”) from a SNP database. We tested the tool by performing low-coverage sequencing of over 2000 strains. SNPmatch could readily genotype samples correctly from 1-fold coverage sequencing data, and could also identify the parents of F1 or F2 individuals. SNPmatch can be run either on the command line or through AraGeno (https://arageno.gmi.oeaw.ac.at), a web interface that permits sample genotyping from a user-uploaded VCF or BED file.Availability and implementation: https://github.com/Gregor-Mendel-Institute/SNPmatch.git


Author(s):  
Hasindu Gamaarachchi ◽  
Hiruna Samarakoon ◽  
Sasha P. Jenner ◽  
James M. Ferguson ◽  
Timothy G. Amos ◽  
...  

AbstractNanopore sequencing depends on the FAST5 file format, which does not allow efficient parallel analysis. Here we introduce SLOW5, an alternative format engineered for efficient parallelization and acceleration of nanopore data analysis. Using the example of DNA methylation profiling of a human genome, analysis runtime is reduced from more than two weeks to approximately 10.5 h on a typical high-performance computer. SLOW5 is approximately 25% smaller than FAST5 and delivers consistent improvements on different computer architectures.


2014 ◽  
Vol 12 (06) ◽  
pp. 1442005
Author(s):  
Junfang Chen ◽  
Pavlo Lutsik ◽  
Ruslan Akulenko ◽  
Jörn Walter ◽  
Volkhard Helms

Whole-genome bisulfite sequencing (WGBS) is an approach of growing importance. It is the only approach that provides a comprehensive picture of the genome-wide DNA methylation profile. However, obtaining a sufficient amount of genome and read coverage typically requires high sequencing costs. Bioinformatics tools can reduce this cost burden by improving the quality of sequencing data. We have developed a statistical method Ajusted Local Kernel Smoother (AKSmooth) that can accurately and efficiently reconstruct the single CpG methylation estimate across the entire methylome using low-coverage bisulfite sequencing (Bi-Seq) data. We demonstrate the AKSmooth performance on the low-coverage (~ 4×) DNA methylation profiles of three human colon cancer samples and matched controls. Under the best set of parameters, AKSmooth-curated data showed high concordance with the gold standard high-coverage sample (Pearson 0.90), outperforming the popular analogous method. In addition, AKSmooth showed computational efficiency with runtime benchmark over 4.5 times better than the reference tool. To summarize, AKSmooth is a simple and efficient tool that can provide an accurate human colon methylome estimation profile from low-coverage WGBS data. The proposed method is implemented in R and is available at https://github.com/Junfang/AKSmooth .


2019 ◽  
Vol 60 (9) ◽  
pp. 1961-1973 ◽  
Author(s):  
Makiha Fukuda ◽  
Sho Nishida ◽  
Yusuke Kakei ◽  
Yukihisa Shimada ◽  
Toru Fujiwara

Abstract Long intergenic noncoding RNAs (lincRNAs) play critical roles in transcriptional and post-transcriptional regulation of gene expression in a wide variety of organisms. Thousands of lincRNAs have been identified in plant genomes, although their functions remain mostly uncharacterized. Here, we report a genome-wide survey of lincRNAs involved in the response to low-nutrient conditions in Arabidopsis thaliana. We used RNA sequencing data derived from A. thaliana roots exposed to low levels of 12 different nutrients. Using bioinformatics approaches, 60 differentially expressed lincRNAs were identified that were significantly upregulated or downregulated under deficiency of at least one nutrient. To clarify their roles in nutrient response, correlations of expression patterns between lincRNAs and reference genes were examined across the 13 conditions (12 low-nutrient conditions and control). This analysis allowed us to identify lincRNA-RNA pairs with highly positive or negative correlations. In addition, calculating interaction energies of those pairs showed lincRNAs that may act as regulatory interactors; e.g. small interfering RNAs (siRNAs). Among them, trans-acting siRNA3 (TAS3), which is known to promote lateral root development by producing siRNA against Auxin response factor 2, 3, and 4, was revealed as a nitrogen (N)-responsive lincRNA. Furthermore, nitrate transporter 2 was identified as a potential target of TAS3-derived siRNA, suggesting that TAS3 participates in multiple pathways by regulating N transport and root development under low-N conditions. This study provides the first resource for candidate lincRNAs involved in multiple nutrient responses in plants.


2014 ◽  
Vol 30 (13) ◽  
pp. 1933-1934 ◽  
Author(s):  
Kemal Akman ◽  
Thomas Haaf ◽  
Silvia Gravina ◽  
Jan Vijg ◽  
Achim Tresch

Sign in / Sign up

Export Citation Format

Share Document