scholarly journals An algal symbiont (Breviolum psygmophilum) responds more strongly to chronic high temperatures than its facultatively symbiotic coral host (Astrangia poculata)

2021 ◽  
Author(s):  
Andrea N. Chan ◽  
Luis A. González-Guerrero ◽  
Roberto Iglesias-Prieto ◽  
Elizabeth M. Burmester ◽  
Randi D. Rotjan ◽  
...  

AbstractScleractinian corals form the foundation of coral reefs by secreting skeletons of calcium carbonate. Their intracellular algal symbionts (Symbiodiniaceae) translocate a large proportion of photosynthate to the coral host, which is required to maintain high rates of calcification. Global warming is causing dissociation of coral host and algal symbiont, visibly presented as coral bleaching. Despite decades of study, the precise mechanisms of coral bleaching remain unknown. Separating the thermal stress response of the coral from the algal symbiont is key to understanding bleaching in tropical corals. The facultatively symbiotic northern star coral, Astrangia poculata, naturally occurs as both symbiotic and aposymbiotic (lacking algal symbionts) polyps – sometimes on the same coral colony. Thus, it is possible to separate the heat stress response of the coral host alone from the coral in symbiosis with its symbiont Breviolum psygmophilum. Using replicate symbiotic and aposymbiotic ramets of A. poculata, we conducted a chronic heat stress experiment to increase our understanding of the cellular mechanisms resulting in coral bleaching. Sustained high temperature stress resulted in photosynthetic dysfunction in B. psygmophilum, including a decline in maximum photosynthesis rate, maximum photochemical efficiency, and the absorbance peak of chlorophyll a. Interestingly, the metabolic rates of symbiotic and aposymbiotic corals were differentially impacted. RNAseq analysis revealed more differentially expressed genes between heat-stressed and control aposymbiotic colonies than heat-stressed and control symbiotic colonies. Notably, aposymbiotic colonies increased the expression of inflammation-associated genes such as nitric oxide synthases. Unexpectedly, the largest transcriptional response was observed between heat-stressed and control B. psygmophilum, including genes involved in photosynthesis, response to oxidative stress, and meiosis. Thus, it appears that the algal symbiont suppresses the immune response of the host, potentially increasing the vulnerability of the host to pathogens. The A. poculata-B. psygmophilum symbiosis provides a tractable model system for investigating thermal stress and immune challenge in scleractinian corals.

2020 ◽  
Author(s):  
Jenna Dilworth ◽  
Carlo Caruso ◽  
Valerie A. Kahkejian ◽  
Andrew C. Baker ◽  
Crawford Drury

AbstractAs sea surface temperatures increase worldwide due to climate change, coral bleaching events are becoming more frequent and severe, resulting in reef degradation. Leveraging the inherent ability of reef-building corals to acclimatize to thermal stress via pre-exposure to protective temperature treatments may become an important tool in improving the resilience of coral reefs to rapid environmental change. We investigated whether historical bleaching phenotype, coral host genotype, and exposure to protective temperature treatments would affect the response of the Hawaiian coral Montipora capitata to natural thermal stress. Fragments were collected from colonies that demonstrated different bleaching responses during the 2014-2015 event in Kāne’ohe Bay (O’ahu, Hawai’i) and exposed to four different artificial temperature pre-treatments (and a control at ambient temperature). After recovery, fragments experienced a natural thermal stress event either in laboratory conditions or their native reef environment. Response to thermal stress was quantified by measuring changes in the algal symbionts’ photochemical efficiency, community composition, and relative density. Historical bleaching phenotype was reflected in stable differences in symbiont community composition, with historically bleached corals containing only Cladocopium symbionts and historically non-bleached corals having mixed symbiont communities dominated by Durusdinium. Mixed-community corals lost more Cladocopium than Cladocopium-only corals during the natural thermal stress event, and preferentially recovered with Durusdinium. Laboratory pre-treatments exposed corals to more thermal stress than anticipated, causing photochemical damage that varied significantly by genotype. While none of the treatments had a protective effect, temperature variation during treatments had a significant detrimental effect on photochemical efficiency during the thermal stress event. These results show that acclimatization potential is affected by fine-scale differences in temperature regime, host genotype, and relatively stable differences in symbiont community composition that underpin historical bleaching phenotypes in M. capitata.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20140650 ◽  
Author(s):  
M. Wall ◽  
L. Putchim ◽  
G. M. Schmidt ◽  
C. Jantzen ◽  
S. Khokiattiwong ◽  
...  

Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26687 ◽  
Author(s):  
William Leggat ◽  
Francois Seneca ◽  
Kenneth Wasmund ◽  
Lubna Ukani ◽  
David Yellowlees ◽  
...  

2021 ◽  
Author(s):  
Ana M. Palacio-Castro ◽  
Caroline E. Dennison ◽  
Stephanie M. Rosales ◽  
Andrew C. Baker

Coral cover is declining worldwide due to multiple interacting threats. We compared the effects of elevated nutrients and temperature on three Caribbean corals: Acropora cervicornis, Orbicella faveolata, and Siderastrea siderea. Colonies hosting different algal types were exposed to either ambient nutrients (A), elevated NH4 (N), or elevated NH4 + PO4 (N+P) at control temperatures (26 °C) for > 2 months, followed by a 3-week thermal challenge (31.5 °C). A. cervicornis hosted Symbiodinium (S. fitti) and was highly susceptible to the combination of elevated nutrients and temperature. During heat stress, A. cervicornis pre-exposed to elevated nutrients experienced 84%-100% mortality and photochemical efficiency (Fv/Fm) declines of 41-50%. In comparison, no mortality and lower Fv/Fm declines (11-20%) occurred in A. cervicornis that were heat-stressed but not pre-exposed to nutrients. O. faveolata and S. siderea response to heat stress was determined by their algal symbiont community and was not affected by nutrients. O. faveolata predominantly hosted Durusdinium trenchii or Breviolum, but only corals hosting Breviolum were susceptible to heat, experiencing 100% mortality, regardless of nutrient treatment. S. siderea colonies predominantly hosted Cladocopium C1 (C. goreaui), Cladocopium C3, D. trenchii, or variable proportions of Cladocopium C1 and D. trenchii. This species was resilient to elevated nutrients and temperature, with no significant mortality in any of the treatments. However, during heat stress, S. siderea hosting Cladocopium C3 suffered higher reductions in Fv/Fm (41-56%) compared to S. siderea hosting Cladocopium C1 and D. trenchii (17-26% and 10-16%, respectively). These differences in holobiont susceptibility to elevated nutrients and heat may help explain historical declines in A. cervicornis starting decades earlier than other Caribbean corals. Our results suggest that tackling only warming temperatures may be insufficient to ensure the continued persistence of Caribbean corals, especially A. cervicornis. Reducing nutrient inputs to reefs may also be necessary for these iconic coral species to survive.


Coral Reefs ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 885-902 ◽  
Author(s):  
Rowan H. McLachlan ◽  
James T. Price ◽  
Sarah L. Solomon ◽  
Andréa G. Grottoli

AbstractFor over three decades, scientists have conducted heat-stress experiments to predict how coral will respond to ocean warming due to global climate change. However, there are often conflicting results in the literature that are difficult to resolve, which we hypothesize are a result of unintended biases, variation in experimental design, and underreporting of critical methodological information. Here, we reviewed 255 coral heat-stress experiments to (1) document where and when they were conducted and on which species, (2) assess variability in experimental design, and (3) quantify the diversity of response variables measured. First, we found that two-thirds of studies were conducted in only three countries, three coral species were more heavily studied than others, and only 4% of studies focused on earlier life stages. Second, slightly more than half of all heat-stress exposures were less than 8 d in duration, only 17% of experiments fed corals, and experimental conditions varied widely, including the level and rate of temperature increase, light intensity, number of genets used, and the length of acclimation period. In addition, 95%, 55%, and > 35% of studies did not report tank flow conditions, light–dark cycle used, or the date of the experiment, respectively. Finally, we found that 21% of experiments did not measure any bleaching phenotype traits, 77% did not identify the Symbiodiniaceae endosymbiont, and the contribution of the coral host in the physiological response to heat-stress was often not investigated. This review highlights geographic, taxonomic, and heat-stress duration biases in our understanding of coral bleaching, and large variability in the reporting and design of heat-stress experiments that could account for some of the discrepancies in the literature. Development of some best practice recommendations for coral bleaching experiments could improve cross-studies comparisons and increase the efficiency of coral bleaching research at a time when it is needed most.


2019 ◽  
Author(s):  
SW Davies ◽  
K Moreland ◽  
DC Wham ◽  
MR Kanke ◽  
MV Matz

AbstractMany broadly-dispersing corals acquire their algal symbionts (Symbiodiniaceae) ‘horizontally’ from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence of Cladocopium algal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with two genetically distinct Cladocopium lineages (C40, C21), confirming that Acropora coral hosts associate with a range of Cladocopium symbionts across this region. Both C40 and C21 exhibited extensive clonality. Clones not only existed across host conspecifics living on the same reef, but also spanned host species, reef sites within islands, and even different islands. Both Cladocopium lineages exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral-associated Cladocopium communities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersing Acropora coral species.


2020 ◽  
Author(s):  
Amanda Williams ◽  
Eric N. Chiles ◽  
Dennis Conetta ◽  
Jananan S. Pathmanathan ◽  
Phillip A. Cleves ◽  
...  

SummaryCoral reef systems are under global threat due to warming and acidifying oceans1. Understanding the response of the coral holobiont to environmental change is crucial to aid conservation efforts. The most pressing problem is “coral bleaching”, usually precipitated by prolonged thermal stress that disrupts the algal symbiosis sustaining the holobiont2,3. We used metabolomics to understand how the coral holobiont metabolome responds to heat stress with the goal of identifying diagnostic markers prior to bleaching onset. We studied the heat tolerant Montipora capitata and heat sensitive Pocillopora acuta coral species from the Hawaiian reef system in Kāne’ohe Bay, O’ahu. Untargeted LC-MS analysis uncovered both known and novel metabolites that accumulate during heat stress. Among those showing the highest differential accumulation were a variety of co-regulated dipeptides present in both species. The structures of four of these compounds were determined (Arginine-Glutamine, Lysine-Glutamine, Arginine-Valine, and Arginine-Alanine). These dipeptides also showed differential accumulation in symbiotic and aposymbiotic (alga free) individuals of the sea anemone model Aiptasia4, suggesting their animal provenance and algal symbiont related function. Our results identify a suite of metabolites associated with thermal stress that can be used to diagnose coral health in wild samples.


2021 ◽  
Author(s):  
Sheila A Kitchen ◽  
Duo Jiang ◽  
Saki Harii ◽  
Noriyuki Satoh ◽  
Virginia M Weis ◽  
...  

The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter larval behavior, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over two weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than non-colonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either canceled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate pre-settlement event in corals, our results suggest that colonization may hinder larval survival and recruitment creating isolated, genetically similar populations under projected climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document