scholarly journals Predicting the zoonotic capacity of mammal species for SARS-CoV-2

Author(s):  
Ilya R. Fischhoff ◽  
Adrian A. Castellanos ◽  
João P.G.L.M. Rodrigues ◽  
Arvind Varsani ◽  
Barbara A. Han

AbstractSpillback transmission from humans to animals, and secondary spillover from animal hosts back into humans, have now been documented for SARS-CoV-2. In addition to threatening animal health, virus variants arising from novel animal hosts have the potential to undermine global COVID-19 mitigation efforts. Numerous studies have therefore investigated the zoonotic capacity of various animal species for SARS-CoV-2, including predicting both species’ susceptibility to infection and their capacities for onward transmission. A major bottleneck to these studies is the limited number of sequences for ACE2, a key cellular receptor in chordates that is required for viral cell entry. Here, we combined protein structure modeling with machine learning of species’ traits to predict zoonotic capacity of SARS-CoV-2 across 5,400 mammals. High accuracy model predictions were strongly corroborated by in vivo empirical studies, and identify numerous mammal species across global COVID-19 hotspots that should be prioritized for surveillance and experimental validation.

2000 ◽  
Vol 81 (9) ◽  
pp. 2203-2213 ◽  
Author(s):  
Sarah L. Londrigan ◽  
Marilyn J. Hewish ◽  
Melanie J. Thomson ◽  
Georgina M. Sanders ◽  
Huseyin Mustafa ◽  
...  

Rotavirus replication occurs in vivo in intestinal epithelial cells. Cell lines fully permissive to rotavirus include kidney epithelial (MA104), colonic (Caco-2) and hepatic (HepG2) types. Previously, it has been shown that cellular integrins α2β1, α4β1 and αXβ2 are involved in rotavirus cell entry. As receptor usage is a major determinant of virus tropism, the levels of cell surface expression of these integrins have now been investigated by flow cytometry on cell lines of human (Caco-2, HepG2, RD, K562) and monkey (MA104, COS-7) origin in relation to cellular susceptibility to infection with monkey and human rotaviruses. Cells supporting any replication of human rotaviruses (RD, HepG2, Caco-2, COS-7 and MA104) expressed α2β1 and (when tested) αXβ2, whereas the non-permissive K562 cells did not express α2β1, α4β1 or αXβ2. Only RD cells expressed α4β1. Although SA11 grew to higher titres in RD, HepG2, Caco-2, COS-7 and MA104 cells, this virus still replicated at a low level in K562 cells. In all cell lines tested, SA11 replicated to higher titres than did human strains, consistent with the ability of SA11 to use sialic acids as alternative receptors. Levels of cell surface α2 integrin correlated with levels of rotavirus growth. The α2 integrin relative linear median fluorescence intensity on K562, RD, COS-7, MA104 and Caco-2 cells correlated linearly with the titre of SA11 produced in these cells at 20 h after infection at a multiplicity of 0·1, and the data best fitted a sigmoidal dose–response curve (r 2=1·00, P=0·005). Thus, growth of rotaviruses in these cell lines correlates with their surface expression of α2β1 integrin and is consistent with their expression of αXβ2 and α4β1 integrins.


2021 ◽  
Author(s):  
Alba Escalera ◽  
Ana S. Gonzalez-Reiche ◽  
Sadaf Aslam ◽  
Ignacio Mena ◽  
Rebecca L. Pearl ◽  
...  

For efficient cell entry and membrane fusion, SARS-CoV-2 spike (S) protein needs to be cleaved at two different sites, S1/S2 and S2 by different cellular proteases such as furin and TMPRSS2. Polymorphisms in the S protein can affect cleavage, viral transmission, and pathogenesis. Here, we investigated the role of arising S polymorphisms in vitro and in vivo to understand the emergence of SARS-CoV-2 variants. First, we showed that the S:655Y is selected after in vivo replication in the mink model. This mutation is present in the Gamma Variant Of Concern (VOC) but it also occurred sporadically in early SARS-CoV-2 human isolates. To better understand the impact of this polymorphism, we analyzed the in vitro properties of a panel of SARS-CoV-2 isolates containing S:655Y in different lineage backgrounds. Results demonstrated that this mutation enhances viral replication and spike protein cleavage. Viral competition experiments using hamsters infected with WA1 and WA1-655Y isolates showed that the variant with 655Y became dominant in both direct infected and direct contact animals. Finally, we investigated the cleavage efficiency and fusogenic properties of the spike protein of selected VOCs containing different mutations in their spike proteins. Results showed that all VOCs have evolved to acquire an increased spike cleavage and fusogenic capacity despite having different sets of mutations in the S protein. Our study demonstrates that the S:655Y is an important adaptative mutation that increases viral cell entry, transmission, and host susceptibility. Moreover, SARS-COV-2 VOCs showed a convergent evolution that promotes the S protein processing.


2020 ◽  
Vol 26 (16) ◽  
pp. 1759-1777 ◽  
Author(s):  
Tatiane F. Vieira ◽  
Rúbia C. G. Corrêa ◽  
Rosely A. Peralta ◽  
Regina F. Peralta-Muniz-Moreira ◽  
Adelar Bracht ◽  
...  

Background: Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. Methods: The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. Results: The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. Conclusion: A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.


Author(s):  
Filiz Dermicik ◽  
Susanna Lopez Kostka ◽  
Stefan Tenzer ◽  
Ari Waisman ◽  
Esther Von Stebut

Abstract In cutaneous leishmaniasis, infection of dendritic cells (DC) is essential for generation of T cell-dependent protective immunity. DC acquires Leishmania major through Fc receptor (FcR)-mediated uptake of complexes comprising antibodies bound to parasites. We now assessed the development of the initial B cell and DC response to the parasite itself and if natural IgG play a role. L. major parasites display large numbers of phospholipids on their surface. Parasites were opsonized with normal mouse serum (NMS), or serum containing anti-phospholipid IgG (PL). We found that L. major bound to PL which significantly enhanced parasite phagocytosis by DC as compared to NMS. Similar results were obtained with cross-reactive human PL antibodies using myeloid primary human DC. In addition, mice infected with PL-opsonized parasites showed significantly improved disease outcome compared to mice infected with NMS-opsonized parasites. Finally, IgMi mice, which produce membrane-bound IgM only and no secreted antibodies, displayed increased susceptibility to infection as compared to wild types. Interestingly, once NMS was administered to IgMi mice, their phenotype was normalized to that of wild types. Upon incubation with IgG-opsonized parasite (IgG derived from infected mice or using PL antibodies), also the IgMi mice were able to show superior immunity. Our findings suggest that “natural” cross-reactive antibodies (e.g., anti-PL Ab) in NMS bind to pathogens to facilitate phagocytosis, which leads to induction of protective immunity via preferential DC infection. Prior L. major-specific B cell-priming does not seem to be absolutely required to facilitate clearance of this important human pathogen in vivo. Key messages We found that anti-phospholipid (anti-PL) antibodies enhance phagocytosis of L. major by DCs. We also found that normal mouse sera have natural antibodies that can imitate PL specific antibodies. Using different genetically modified mice, we found that these antibodies can be IgG, not only IgM.


2004 ◽  
Vol 16 (2) ◽  
pp. 213 ◽  
Author(s):  
J. Small ◽  
M. Colazo ◽  
D. Ambrose ◽  
R. Mapletoft ◽  
J. Reeb ◽  
...  

The objective was to evaluate the effect of pLH treatment on pregnancy rates in recipients receiving in vivo- or in vitro-produced bovine embryos. Heifers (n=37) and lactating (n=28) and non-lactating (n=150) beef cows were treated at random stages of the cycle with 100μg GnRH i.m. (Cystorelin, Merial Canada Inc., Victoriaville, Quebec, Canada) on Day −9, 500μg cloprostenol i.m. (PGF; Estrumate, Schering Plough Animal Health, Pointe-Claire, Quebec, Canada) on Day —2 and GnRH on Day 0 (66h post-PGF; without estrus detection). Cattle were placed at random, by class, into three groups: no further treatment (Control; n=71), or 12.5mg pLH (Lutropin-V, Bioniche Animal Health, Belleville, Ontario, Canada) on Day 5 (n=72) or on Day 7 (n=72) after the second GnRH. On Day 7, cattle with a CL >10mm in diameter (determined ultrasonically) received in vivo-produced, fresh (Simmental) or frozen (Holstein), or in vitro-produced frozen (Holstein) embryos (embryo type balanced among groups). Embryos were cryopreserved in 10% ethylene glycol; in vivo-produced frozen embryos were thawed 5 to 10s in air, 15s in a water-bath at 30°C and then “direct-transferred” nonsurgically. In vitro-produced frozen embryos (donated by IND Lifetech Inc., Delta, British Columbia, Canada) were thawed in a water-bath at 27°C for 10s and placed in ViGro Holding Plus medium (AB Technology, Pullman, WA, USA) at room temperature, evaluated and then transferred nonsurgically. Pregnancy was determined by ultrasonography on Day 35. Data were analyzed with CATMOD, chi-square and GLM procedures (SAS Institute, Cary, NC, USA.). Twenty cattle (9.3%) did not receive embryos; five heifers had cervical problems, and five heifers and 10 cows did not have a CL >10mm. Overall, 7.1% of the recipients had two CL on the day of embryo transfer. There was no effect (P>0.05) of treatment, embryo type (or interaction) or class of recipient on pregnancy rate (overall, 44.1%, 86/195; Table 1). Similarly, mean (±SD) CL diameter and luteal area did not differ (P>0.05) among groups or between pregnant and open recipients (overall, 22.0±3.4mm and 352.0±108.7mm, respectively). However, recipients with a CL diameter ≥18mm tended (P<0.1) to have a higher pregnancy rate (45.8 vs 25.0%). In a subset of 40 recipients examined ultrasonically on Day 12, 50% of those treated on Day 5 and 70% of those treated with pLH on Day 7 had two CL. In summary, overall pregnancy rate in GnRH-synchronized recipients receiving in vitro- or in vivo-produced embryos by nonsurgical transfer was 44.1%. Embryo survival to Day 35 was not affected by type of embryo or treatment with pLH 5 or 7 days after ovulation. Table 1 Pregnancy rate in recipients on Day 35 based on pLH treatment and embryo-type


2022 ◽  
Vol 45 (2) ◽  
pp. 33-40
Author(s):  
Mohammed M Dakheel ◽  
Afnan A Al-Mnaser ◽  
Jessica Quijada ◽  
Martin J Woodward ◽  
Caroline Rymer

The antimicrobial effects of diverse tannin-containing plants, particularly condensed tannins (CTs) produced from various plants, are the subject of this study. CT components can be determined using CT-specific procedures such the HCl-Butanol Acetone assay, Thiolysis reaction, and HPLC/MS analysis. These methods indicate CT contents, including mean degree of polymerization, the procyanidins and prodelphinidins ratio (PC/PD%), the isomers of trans- and cis-, and CT concentration. Tannin-containing plants possess antibacterial action, which can be attributed to their protein linkage technique, and tannin-type variations, particularly CTs extract and their PC/PD%. The effects of CT components on the development of Gram-positive and Gram-negative bacteria have been documented for their relative PC/PD%; this is regarded to be a key predictor of tannin characteristics in terms of antimicrobials. In conclusion, tannins, more specific CT compositions, have significant impacts on in vivo trials of animal productions and utilization of metabolites and fermentation in vitro experiments. These findings need further investigations to fully understand how CT-types act on animal feeding in terms of enhanced nutritional quality of animal diets, which may have implications for human and animal health.


2021 ◽  
Author(s):  
Ichiro Misumi ◽  
Zhucui Li ◽  
Lu Sun ◽  
Anshuman Das ◽  
Tomoyuki Shiota ◽  
...  

Iminosugar compounds are monosaccharide mimetics with broad but generally weak antiviral activities related to inhibition of enzymes involved in glycobiology. Miglustat (N-butyl-1-deoxynojirimycin), which is approved for treatment of lipid storage diseases in humans, and UV-4 (N-(9-methoxynonyl)-1-deoxynojirimycin), inhibit replication of hepatitis A virus (HAV) in cell culture (IC50 32.13 μM and 8.05 μM, respectively) by blocking the synthesis of gangliosides essential for HAV cell entry. We used a murine model of hepatitis A and targeted mass spectrometry to assess the capacity of these compounds to deplete hepatic gangliosides and modify the course of HAV infection in vivo. Miglustat, given by gavage to Ifnar1-/- mice (4800 mg/kg/day) depleted hepatic gangliosides by 69-75%, but caused substantial gastrointestinal toxicity and failed to prevent viral infection. UV-4, similarly administered in high doses (400 mg/kg/day), was well tolerated, but depleted hepatic gangliosides by only 20% after 14 days. UV-4 depletion of gangliosides varied by class. Several GM2 species were paradoxically increased, likely due to inhibition of β-glucosidases that degrade gangliosides. Both compounds enhanced, rather than reduced, virus replication. Nonetheless, both iminosugars had surprising anti-inflammatory effects, blocking the accumulation of inflammatory cells within the liver. UV-4 treatment also resulted in a decrease in serum alanine aminotransferase (ALT) elevations associated with acute hepatitis A. These anti-inflammatory effects may result from iminosugar inhibition of cellular α-glucosidases, leading to impaired maturation of glycan moieties of chemokine and cytokine receptors, and point to the potential importance of paracrine signaling in the pathogenesis of acute hepatitis A. IMPORTANCE Hepatitis A virus (HAV) is a common cause of viral hepatitis. Iminosugar compounds block its replication in cultured cells by inhibiting synthesis of gangliosides required for HAV cell entry, but have not been tested for their ability to prevent or treat hepatitis A in vivo. We show that high doses of the iminosugars miglustat and UV-4 fail to deplete gangliosides sufficiently to block HAV infection in mice lacking a key interferon receptor. These compounds nonetheless have striking anti-inflammatory effects on the HAV-infected liver, reducing the severity of hepatitis despite enhancing chemokine and cytokine expression resulting from hepatocyte-intrinsic antiviral responses. We propose that iminosugar inhibition of cellular α-glucosidases impairs maturation of glycan moieties of chemokine and cytokine receptors required for effective signaling. These data highlight the potential importance of paracrine signaling pathways in the inflammatory response to HAV, and add to our understanding of HAV pathogenesis in mice.


Author(s):  
Elizabeth R Pansing

James H. Brown’s “Mammals on mountaintops: nonequilibrium insular biogeography,” published in 1971 in The American Naturalist, documented distributional patterns of small mammal species in the mountaintop islands of the Great Basin, USA. Distributional patterns suggested that this island-like system was not in equilibrium and represented some of the first evidence contradicting the seminal Theory of Island Biogeography. Brown’s findings suggested that ecological and historical mechanisms were integral to community assembly and maintenance in island-like systems, broadening the focus of research related to biogeographical patterns in islands. The work further highlighted the importance of species traits on distributional patterns. Here, I review the paper and its contributions.


2016 ◽  
Vol 28 (2) ◽  
pp. 191 ◽  
Author(s):  
G. P. Adams ◽  
S. X. Yang ◽  
J. M. Palomino ◽  
M. Anzar

Recent progress with methods to control ovulation and semen cryopreservation in Wood Bison was the impetus to test the feasibility of timed AI to facilitate reclamation of this threatened species. A 2 × 2 design was used to compare the efficacy of 2 ovulation synchronization techniques and 2 semen cryopreservation protocols. Female Wood Bison were assigned randomly to 2 groups (n = 24/group) in which ovarian synchronization was induced by ultrasound-guided ablation of follicles >5 mm or intramuscular treatment with 2.5 mg of estradiol 17B + 50 mg of progesterone (E+P) in canola oil. A progesterone-releasing intravaginal device (PRID) was placed at the time of follicle ablation (for 5 days) or E+P treatment (for 8 days) in the respective groups. A luteolytic dose of prostaglandin was given at the time of PRID removal, and 2500 IU of hCG was given IM 3 days later. Bison were inseminated 24 and 36 h after hCG treatment using frozen-thawed semen. The semen was collected by electro-ejaculation from 4 Wood Bison bulls, pooled, and divided into aliquots diluted in either egg-yolk extender (EY) or cholesterol-loaded cyclodextrin extender (CLC). Half the bison in each synchronization group were inseminated with either EY- or CLC-extended semen. Bison were examined by ultrasonography every 12 h beginning on the day of hCG treatment for 3 days or until ovulation was detected, whichever occurred first. Pregnancy diagnosis was made by ultrasonography 34–36 days after insemination. Two bison were excluded during the experiment because of handling difficulty; therefore, the total number of bison used was 46. Ovulation rate and interval to ovulation were compared between synchronization groups by chi-square and t-test, respectively. Pregnancy rates were compared among groups by 2-way ANOVA after transforming data to arcsin. The ovulation rate was not different between synchronization groups [combined mean, 37/46 (80%)], nor was the degree of synchrony, as assessed by the residuals (variation from the mean) in the respective groups. However, the diameter (mean ± standard error of the mean) of the dominant follicle at the time of hCG treatment was smaller in the follicle ablation group than in the E+P group (10.5 ± 0.6 v. 13.9 ± 0.6; P < 0.04), and the interval from hCG treatment to ovulation tended to be longer (35.3 ± 1.6 v. 31.8 ± 1.3 h; P ≤ 0.10). Pregnancy rate was not affected by synchronization procedure, but pregnancy was detected only in the EY-inseminated group (9/23 v. 0/23; P < 0.01). Despite that post-thaw sperm motility was similar for EY and CLC semen (41.7 ± 2.9 and 44.6 ± 3.3%; respectively), CLC-treated semen failed to impregnate bison in vivo. We concluded that synchronization and timed insemination with frozen-thawed semen is feasible in Wood Bison. Of the 23 bison inseminated with EY-extended semen, 21 ovulated (91%), and of those that ovulated 9 became pregnant (43%). Both synchronization schemes were effective, but the ablation protocol may be improved by an additional day between ablation and hCG treatment. We thank Vetoquinol Canada and Merck Animal Health for providing hormone treatments.


2008 ◽  
Vol 20 (1) ◽  
pp. 87
Author(s):  
J. O. Giordano ◽  
J. L. Edwards ◽  
G. M. Schuenemann ◽  
N. Rohrbach ◽  
F. N. Schrick

In vitro exposure of oocytes to elevated temperatures hastened oocyte maturation; furthermore, performing IVF of heat-stressed oocytes 5 h earlier than the usual 24 h resulted in blastocyst development similar to that of non-heat-stressed controls (Edwards et al. 2005 J. Dairy Sci. 88, 4326–4333). If elevated ambient temperatures in vivo alter oocyte maturation in a similar fashion, then new strategies are needed to induce earlier release of the oocyte from the ovulatory follicle. Current objectives were to examine follicular growth after FSH administration and examine whether treatment with FSH and an exogenously induced LH surge would hasten ovulation. On Day 0 (8 to 9 days after estrus) of the experimental period, lactating Holstein cows (n = 31; 65–115 days in milk; 1–6 lactations) received an EAZI-BREED CIDR (Pfizer Animal Health, New York, NY, USA) plus 100 µg of gonadotropin-releasing hormone (GnRH, IM; Cystorelin, Merial Ltd, Iselin, NJ, USA). On Day 7, CIDRs were removed and cows were administered 500 µg cloprostenol (IM; Estrumate, Schering-Plough Animal Health, Union, NJ, USA). Concurrently, cows were randomly allocated to receive either 80 mg FSH (FSH; n = 15; Folltropin-V, Bioniche Animal Health, Belleville, ON, Canada) or 4 mL of sterile saline (SAL; n = 16). Forty-eight h later (Day 9), cows within the FSH and SAL groups were randomly subdivided to receive either a 100-µg dose of Cysterolin (GnRH) or 3000 IU of hCG (hCG, IM; Chorulon, Intervet Inc., Millsboro, DE, USA) generating 4 treatment combinations (FSH/GnRH, n = 3; FSH/hCG, n = 7; SAL/GnRH, n = 8; and SAL/hCG, n = 8). Ovarian activity was assessed by ultrasonography to evaluate growth of the ovulatory follicle. Following CIDR removal, frequent ultrasonography was utilized to confirm ovulation (disappearance of the dominant follicle). Data were analyzed using the MIXED procedure of SAS (SAS Institute, Inc., Cary, NC, USA). Five cows from the FSH group were removed from the combination treatment due to ovulation occurring before 48 h post-CIDR removal. Size of the ovulatory follicle at time of GnRH or hCG administration was not different between FSH or SAL groups (16.7 � 0.7 v. 17.5 � 0.6 mm, respectively). Total growth of the ovulatory follicle from CIDR removal to ovulation did not differ between FSH (3.04 � 0.7 mm) and SAL (2.75 � 0.7 mm)-treated cows. As calculated from time of CIDR removal, ovulation occurred earlier in FSH (63.6 � 4.5 h) than in SAL (77.2 � 4.4 h; P < 0.05)-treated cows. Combination of FSH/GnRH produced the earliest ovulation (74 � 1.2 h) which was different only from FSH/hCG (78.6 � 0.8 h; P < 0.05), but not from SAL/GnRH or SAL/hCG (77 � 0.8 and 78 � 0.8 h, respectively). Regardless of FSH or SAL treatment, cows treated with GnRH ovulated earlier than those treated with hCG (75.5 � 0.7 v. 78.3 � 0.6 h, respectively; P < 0.05). In conclusion, while FSH was unable to increase the size of the ovulatory follicle, earlier ovulation occurred when given alone or in combination with GnRH.


Sign in / Sign up

Export Citation Format

Share Document