scholarly journals Evolutionary trajectories and transmission dynamics of multidrug-resistant Mycobacterium tuberculosis in Tibet, China

Author(s):  
Qi Jiang ◽  
Hai-can Liu ◽  
Qing-yun Liu ◽  
Jody E. Phelan ◽  
Li Shi ◽  
...  

ABSTRACTObjectiveTibet has the highest prevalence of both tuberculosis disease and multidrug-resistant tuberculosis (MDR-TB) in China. The circulated Mycobacterium tuberculosis strains from Tibet were sequenced to investigate the underlying drivers for the high burden of MDR-TB.MethodsUsing whole-genome sequencing data of 576 M. tuberculosis strains isolated from consecutive patients in Tibet, we mapped resistance-conferring mutations onto phylogenetic trees to determine their evolution and spread. The impact of drug resistance on bacterial population growth was assessed with a Bayesian (Skyline Plot) analysis. Multivariable logistic regression was used to identify risk factors for the development of rifampicin resistance.ResultsOf the 576 isolates, 284 (49.3%), 280 (48.6%), and 236 (41.0%) were, respectively, genetically resistant to isoniazid, rifampicin, or both (MDR-TB). Among the isoniazid- and rifampicin-resistant strains, the proportions in phylogenetically-inferred clusters were 77.8% (221/284) and 62.1% (174/280), respectively. Nearly half (47.2%, 134/284) of the isoniazid-resistant strains were in six major clades, which contained between 8 and 58 strains with katG S315T, katG S315N, or fabG1 promoter −15 C>T resistance mutations. These major clades exponentially expanded after emerging with isoniazid resistance and stabilized before evolving into MDR-TB twenty years later. Isoniazid-resistant isolates showed an increased risk of accumulating rifampicin resistance compared to isoniazid-susceptible strains, with an adjusted odds ratio of 3.81 (95% confidence interval 2.47-5.95).ConclusionHistorical expansion of isoniazid-resistant strains and their increased likelihood of acquiring rifampicin resistance both contributed to the high burden of MDR-TB in Tibet, highlighting the need to detect INH-resistant strains promptly and to control their transmission.

2017 ◽  
Vol 8 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Aleksandr I. Ilin ◽  
Murat E. Kulmanov ◽  
Ilya S. Korotetskiy ◽  
Marina V. Lankina ◽  
Gulshara K. Akhmetova ◽  
...  

Emergence of multidrug resistant strains ofMycobacterium tuberculosis(MDR-TB) threatens humanity. This problem was complicated by the crisis in development of new anti-tuberculosis antibiotics. Induced reversion of drug resistance seems promising to overcome the problem. Successful clinical trial of a new anti-tuberculosis nanomolecular complex FS-1 has demonstrated prospectively of this approach in combating MDR-TB. Several clinical MDR-TB cultures were isolated from sputum samples prior and in the process of the clinical trial. Every isolate was tested for susceptibility to antibiotics and then they were sequenced for comparative genomics. It was found that the treatment with FS-1 caused an increase in the number of antibiotic susceptible strains among Mtb isolates that was associated with a general increase of genetic heterogeneity of the isolates. Observed impairing of phthiocerol dimycocerosate biosynthesis by disruptive mutations inppsACDsubunits indicated a possible virulence remission for the sake of persistence. It was hypothesized that the FS-1 treatment eradicated the most drug resistant Mtb variants from the population by aggravating the fitness cost of drug resistance mutations. Analysis of distribution of these mutations in the global Mtb population revealed that many of them were incompatible with each other and dependent on allelic states of many other polymorphic loci. The latter discovery may explain the negative correlation between the genetic heterogeneity of the population and the level of drug tolerance. To the best of our knowledge, this work was the first experimental confirmation of the drug induced antibiotic resistance reversion by the induced synergy mechanism that previously was predicted theoretically.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Kingsley King-Gee Tam ◽  
Kenneth Siu-Sing Leung ◽  
Gilman Kit-Hang Siu ◽  
Kwok-Chiu Chang ◽  
Samson Sai-Yin Wong ◽  
...  

ABSTRACT An in-house-developed pncA sequencing assay for analysis of pyrazinamide (PZA) resistance was evaluated using 162 archived Mycobacterium tuberculosis complex (MTBC) isolates with phenotypic PZA susceptibility profiles that were well defined by analysis of Bactec MGIT 960 PZA kit and PZase activity data. Preliminary results showed 100% concordance between pncA sequencing and phenotypic PZA drug susceptibility test (DST) results among archived isolates. Also, 637 respiratory specimens were prospectively collected, and 158 were reported as MTBC positive by the Abbott Realtime MTB assay (96.3% sensitivity [95% confidence interval {CI}: 92.2% to 98.7%]; 100% specificity [95% CI: 99.2% to 100.0%]). Genotypic and phenotypic PZA resistance profiles of these 158 MTBC-positive specimens were analyzed by pncA sequencing and Bactec MGIT 960 PZA kit, respectively. For analysis of PZA resistance, pncA sequencing detected pncA mutations in 5/5 (100%) phenotypic PZA-resistant respiratory specimens within 4 working days. No pncA mutations were detected among PZA-susceptible specimens. Combining archived isolates with prospective specimens, 27 were identified as phenotypic PZA resistant with pncA mutation. Among these 27 samples, 6/27 (22.2%) phenotypic PZA-resistant strains carried novel pncA mutations without rpsA and panD mutations. These included 5 with mutations (a deletion [Del] at 383T [Del383T], Del 380 to 390, insertion of A [A Ins] at position 127, A Ins at position 407, and G Ins at position 508) in pncA structural genes and 1 with a mutation (T-12C) at the pncA promoter region. All six of these strains had no or reduced PZase activities, indicating that the novel mutations might confer PZA resistance. Additionally, 25/27 phenotypic PZA-resistant strains were confirmed multidrug-resistant tuberculosis (MDR-TB) strains. As PZA is commonly used in MDR-TB treatment regimens, direct pncA sequencing will rapidly detect PZA resistance and facilitate judicious use of PZA in treating PZA-susceptible MDR-TB.


2013 ◽  
Vol 1 (1) ◽  
pp. 30-37 ◽  
Author(s):  
B Dahal ◽  
N Adhikari ◽  
Y Shah ◽  
RC Simkhada ◽  
B Maharjan ◽  
...  

Background and Objectives: Multidrug-resistant (MDR) Mycobacterium tuberculosis strains are serious threats to the control of tuberculosis and comprise an increasing public health problem. Rapid detection of such strains is quite critical in timely management of such issues. The study was performed with an objective to compare Genotype MTBDRplus reverse hybridization probe assay (Hain Lifescince, GmBH, Nehern, Germany) with culture based proportion method for rapidly identifying MDR-TB strains from suspected multi drug resistant cases, referred to GENETUP Kathmandu, Nepal. Methodology: A commercially available new Genotype MTBDRplus assay was evaluated for its ability to detect mutations in Mycobacterial isolates conferring resistance to rifampicin (RMP) and isoniazid (INH). A total of 64 MDR isolates (i.e., at least resistant to RMP and INH), 5 fully susceptible strains and 1 RMP sensitive strains by conventional proportion method were analyzed using Genotype MTBDRplus assay. MTBDRplus assay is designed to detect the mutations in the hot spot region of rpoB gene, katG and regulatory region of inhA gene. Results: The MTBDRplus assay detected 59 of 61 RMP resistant strains (96.72%) with mutations on 81-bp hot spot region of rpoB gene and 60 of 63 INH resistant strains (95.23%) with mutation in codon 315 katG and regulatory region of inhA. The sensitivity and specificity for the detection of RMP resistance were 96.72% and 100% respectively. While, value of the same two variables for INH resistance were 95.23% and 100%, respectively. Conclusions: The new Genotype MTBDRplus assay represents a rapid, reliable, upgraded tool with high sensitivity and specificity for the detection of INH and RMP resistance strains that can readily be included in a routine laboratory work for the early diagnosis and control of MDR-TB. DOI: http://dx.doi.org/10.3126/jmcjms.v1i1.7884 Janaki Medical College Journal of Medical Sciences (2013) Vol. 1 (1):30-37


2020 ◽  
Vol 24 (1) ◽  
pp. 65-72 ◽  
Author(s):  
H. Hong ◽  
D. W. Dowdy ◽  
K. E. Dooley ◽  
H. W. Francis ◽  
C. Budhathoki ◽  
...  

SETTING: The ototoxic effects of aminoglycosides (AGs) lead to permanent hearing loss, which is one of the devastating consequences of multidrug-resistant tuberculosis (MDR-TB) treatment. As AG ototoxicity is dose-dependent, the impact of a surrogate measure of AG exposure on AG-induced hearing loss warrants close attention for settings with limited therapeutic drug monitoring.OBJECTIVE: To explore the prognostic impact of cumulative AG dose on AG ototoxicity in patients following initiation of AG-containing treatment for MDR-TB.DESIGN: This prospective cohort study was nested within an ongoing cluster-randomized trial of nurse case management intervention across 10 MDR-TB hospitals in South Africa.RESULTS: The adjusted hazard of AG regimen modification due to ototoxicity in the high-dose group (≥75 mg/kg/week) was 1.33 times higher than in the low-dose group (<75 mg/kg/week, 95%CI 1.09–1.64). The adjusted hazard of developing audiometric hearing loss was 1.34 times higher than in the low-dose group (95%CI 1.01–1.77). Pre-existing hearing loss (adjusted hazard ratio [aHR] 1.71, 95%CI 1.29–2.26) and age (aHR 1.16 per 10 years of age, 95%CI 1.01–1.33) were also associated with an increased risk of hearing loss.CONCLUSION: MDR-TB patients with high AG dose, advanced age and pre-existing hearing loss have a significantly higher risk of AG-induced hearing loss. Those at high risk may be candidates for more frequent monitoring or AG-sparing regimens.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Daria N. Podlekareva ◽  
Dorte Bek Folkvardsen ◽  
Alena Skrahina ◽  
Anna Vassilenko ◽  
Aliaksandr Skrahin ◽  
...  

Background. To cure drug-resistant (DR) tuberculosis (TB), the antituberculous treatment should be guided by Mycobacterium tuberculosis drug-susceptibility testing (DST). In this study, we compared conventional DST performed in Minsk, Belarus, a TB DR high-burden country, with extensive geno- and phenotypic analyses performed at the WHO TB Supranational Reference Laboratory in Copenhagen, Denmark, for TB/HIV coinfected patients. Subsequently, DST results were related to treatment regimen and outcome. Methods. Thirty TB/HIV coinfected patients from Minsk were included and descriptive statistics applied. Results. Based on results from Minsk, 10 (33%) TB/HIV patients had drug-sensitive TB. Two (7%) had isoniazid monoresistant TB, 8 (27%) had multidrug-resistant (MDR) TB, 5 (17%) preextensive drug-resistant (preXDR) TB, and 5 (17%) had extensive drug-resistant (XDR) TB. For the first-line drugs rifampicin and isoniazid, there was DST agreement between Minsk and Copenhagen for 90% patients. For the second-line anti-TB drugs, discrepancies were more pronounced. For 14 (47%) patients, there were disagreements for at least one drug, and 4 (13%) patients were classified as having MDR-TB in Minsk but were classified as having preXDR-TB based on DST results in Copenhagen. Initially, all patients received standard anti-TB treatment with rifampicin, isoniazid, pyrazinamide, and ethambutol. However, this was only suitable for 40% of the patients based on DST. On average, DR-TB patients were changed to 4 (IQR 3-5) active drugs after 1.5 months (IQR 1-2). After treatment adjustment, the treatment duration was 8 months (IQR 2-11). Four (22%) patients with DR-TB received treatment for >18 months. In total, sixteen (53%) patients died during 24 months of follow-up. Conclusions. We found high concordance for rifampicin and isoniazid DST between the Minsk and Copenhagen laboratories, whereas discrepancies for second-line drugs were more pronounced. For patients with DR-TB, treatment was often insufficient and relevant adjustments delayed. This example from Minsk, Belarus, underlines two crucial points in the management of DR-TB: the urgent need for implementation of rapid molecular DSTs and availability of second-line drugs in all DR-TB high-burden settings. Carefully designed individualized treatment regimens in accordance with DST patterns will likely improve patients’ outcome and reduce transmission with drug-resistant Mycobacterium tuberculosis strains.


2009 ◽  
Vol 53 (12) ◽  
pp. 5064-5068 ◽  
Author(s):  
Levan Jugheli ◽  
Nino Bzekalava ◽  
Pim de Rijk ◽  
Krista Fissette ◽  
Françoise Portaels ◽  
...  

ABSTRACT The aminoglycosides kanamycin and amikacin and the macrocyclic peptide capreomycin are key drugs for the treatment of multidrug-resistant tuberculosis (MDR-TB). The increasing rates of resistance to these drugs and the possible cross-resistance between them are concerns for MDR-TB therapy. Mutations in the 16S rRNA gene (rrs) have been associated with resistance to each of the drugs, and mutations of the tlyA gene, which encodes a putative rRNA methyltransferase, are thought to confer capreomycin resistance in Mycobacterium tuberculosis bacteria. Studies of possible cross-resistance have shown variable results. In this study, the MICs of these drugs for 145 clinical isolates from Georgia and the sequences of the rrs and tlyA genes of the isolates were determined. Of 78 kanamycin-resistant strains, 9 (11.5%) were susceptible to amikacin and 16 (20.5%) were susceptible to capreomycin. Four strains were resistant to capreomycin but were susceptible to the other drugs, whereas all amikacin-resistant isolates were resistant to kanamycin. Sequencing revealed six types of mutations in the rrs gene (A514C, C517T, A1401G, C1402T, C1443G, T1521C) but no mutations in the tlyA gene. The A514C, C517T, C1443G, and T1521C mutations showed no association with resistance to any of the drugs. The A1401G and C1402T mutations were observed in 65 kanamycin-resistant isolates and the 4 capreomycin-resistant isolates, respectively, whereas none of the susceptible isolates showed either of those mutations. The four mutants with the C1402T mutations showed high levels of resistance to capreomycin but no resistance to kanamycin and amikacin. Detection of the A1401G mutation appeared to be 100% specific for the detection of resistance to kanamycin and amikacin, while the sensitivities reached 85.9% and 94.2%, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Sheed Khan ◽  
Jody E. Phelan ◽  
Muhammad Tahir Khan ◽  
Sajid Ali ◽  
Muhammad Qasim ◽  
...  

AbstractTuberculosis (TB), caused by Mycobacterium tuberculosis, is endemic in Pakistan. Resistance to both firstline rifampicin and isoniazid drugs (multidrug-resistant TB; MDR-TB) is hampering disease control. Rifampicin resistance is attributed to rpoB gene mutations, but rpoA and rpoC loci may also be involved. To characterise underlying rifampicin resistance mutations in the TB endemic province of Khyber Pakhtunkhwa, we sequenced 51 M. tuberculosis isolates collected between 2016 and 2019; predominantly, MDR-TB (n = 44; 86.3%) and lineage 3 (n = 30, 58.8%) strains. We found that known mutations in rpoB (e.g. S405L), katG (e.g. S315T), or inhA promoter loci explain the MDR-TB. There were 24 unique mutations in rpoA, rpoB, and rpoC genes, including four previously unreported. Five instances of within-host resistance diversity were observed, where two were a mixture of MDR-TB strains containing mutations in rpoB, katG, and the inhA promoter region, as well as compensatory mutations in rpoC. Heteroresistance was observed in two isolates with a single lineage. Such complexity may reflect the high transmission nature of the Khyber Pakhtunkhwa setting. Our study reinforces the need to apply sequencing approaches to capture the full-extent of MDR-TB genetic diversity, to understand transmission, and to inform TB control activities in the highly endemic setting of Pakistan.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098493
Author(s):  
Jie Zhang ◽  
Yixuan Ren ◽  
Liping Pan ◽  
Junli Yi ◽  
Tong Guan ◽  
...  

Objective This study analyzed drug resistance and mutations profiles in Mycobacterium tuberculosis isolates in a surveillance site in Huairou District, Beijing, China. Methods The proportion method was used to assess drug resistance profiles for four first-line and seven second-line anti-tuberculosis (TB) drugs. Molecular line probe assays were used for the rapid detection of resistance to rifampicin (RIF) and isoniazid (INH). Results Among 235 strains of M. tuberculosis, 79 (33.6%) isolates were resistant to one or more drugs. The isolates included 18 monoresistant (7.7%), 19 polyresistant (8.1%), 28 RIF-resistant (11.9%), 24 multidrug-resistant (MDR) (10.2%), 7 pre-extensively drug-resistant (XDR, 3.0%), and 2 XDR strains (0.9%). A higher rate of MDR-TB was detected among previously treated patients than among patients with newly diagnosed TB (34.5% vs. 6.8%). The majority (62.5%) of RIF-resistant isolates exhibited a mutation at S531L in the DNA-dependent RNA polymerase gene. Meanwhile, 62.9% of INH-resistant isolates carried a mutation at S315T1 in the katG gene. Conclusion Our results confirmed the high rate of drug-resistant TB, especially MDR-TB, in Huairou District, Beijing, China. Therefore, detailed drug testing is crucial in the evaluation of MDR-TB treatment.


Sign in / Sign up

Export Citation Format

Share Document