scholarly journals The Mammalian Cytosolic Type 2 (R)-β-hydroxybutyrate Dehydrogenase (BDH2) is 4-oxo-L-proline Reductase (EC 1.1.1.104)

2021 ◽  
Author(s):  
Sebastian P. Kwiatkowski ◽  
Maria Bozko ◽  
Michal Zarod ◽  
Apolonia Witecka ◽  
Adam K. Jagielski ◽  
...  

AbstractThe early studies on chicken embryos revealed that exposition to 4-oxo-L-proline resulted in the explicit increase in 4-hydroxy-L-proline content in their tissues. In 1962, 4-oxo-L-proline reductase, an enzyme responsible for the reduction of 4-oxo-L-proline, was partially purified from rabbit kidneys and characterized biochemically, but only recently the molecular identity of the enzyme has been unveiled in our laboratory. The present investigation reports the purification, identification as well as biochemical characterization of 4-oxo-L-proline reductase. The enzyme was purified from rat kidneys about 280-fold. Following mass spectrometry analysis of the purified protein preparation, the mammalian cytosolic type 2 (R)-β-hydroxybutyrate dehydrogenase (BDH2) emerged as the only meaningful candidate for the reductase. Rat and human BDH2 were expressed in E. coli, purified, and shown to catalyze the reversible reduction of 4-oxo-L-proline to cis-4-hydroxy-L-proline, as confirmed by chromatographic and mass spectrometry analysis. Specificity studies carried out on both enzymes showed that 4-oxo-L-proline was the best substrate, particularly the human enzyme acted with 9400-fold higher catalytic efficiencies on 4-oxo-L-proline than on (R)-β-hydroxybutyrate. Finally, HEK293T cells efficiently metabolized 4-oxo-L-proline to cis-4-hydroxy-L-proline and simultaneously accumulated trans-4-hydroxy-L-proline in the culture medium, suggesting that 4-oxo-L-proline is most likely an inhibitor of trans-4-hydroxy-L-proline metabolism in human cells. We conclude that BDH2 is mammalian 4-oxo-L-proline reductase that converts 4-oxo-L-proline to cis-4-hydroxy-L-proline, and not to trans-4-hydroxy-L-proline as currently thought, and hypothesize that the enzyme may be considered as a potential source of cis-4-hydroxy-L-proline in mammalian tissues.

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18359-18367 ◽  
Author(s):  
Han-Wei Chu ◽  
Ju-Yi Mao ◽  
Chia-Wen Lien ◽  
Pang-Hung Hsu ◽  
Yu-Jia Li ◽  
...  

Mass spectrometry analysis of pulse laser-induced fragmentation of carbon quantum dots allows characterization of the surface functional groups and carbon core with various heteroatom doping.


2015 ◽  
Vol 26 (8) ◽  
pp. 1299-1310 ◽  
Author(s):  
Roger Théberge ◽  
Sergei Dikler ◽  
Christian Heckendorf ◽  
David H. K. Chui ◽  
Catherine E. Costello ◽  
...  

2006 ◽  
Vol 290 (5) ◽  
pp. L996-L1003 ◽  
Author(s):  
Sabah N. A. Hussain ◽  
Ghassan Matar ◽  
Esther Barreiro ◽  
Maria Florian ◽  
Maziar Divangahi ◽  
...  

Although 4-hydroxy-2-nonenal (HNE, a product of lipid peroxidation) is a major cause of oxidative damage inside skeletal muscles, the exact proteins modified by HNE are unknown. We used two-dimensional electrophoresis, immunoblotting, and mass spectrometry to identify selective proteins targeted by HNE inside the diaphragm of rats under two conditions: severe sepsis [induced by E. coli lipopolysaccharides (LPS)] and during strenuous muscle contractions elicited by severe inspiratory resistive loading (IRL). Diaphragm HNE-protein adduct formation (detected with a polyclonal antibody) increased significantly after 1 and 3 h of LPS injection with a return to baseline values thereafter. Similarly, HNE-protein adduct formation inside the diaphragm rose significantly after 6 but not 3 h of IRL. Mass spectrometry analysis of HNE-modified proteins revealed enolase 3b, aldolase and triosephosphate isomerase 1, creatine kinase, carbonic anyhdrase III, aconitase 2, dihydrolipoamide dehydrogenase, and electron transfer flavoprotein-β. Measurements of in vitro enolase activity in the presence of pure HNE revealed that HNE significantly attenuated enolase activity in a dose-dependent fashion, suggesting that HNE-derived modifications have inhibitory effects on enzyme activity. We conclude that lipid peroxidation products may inhibit muscle contractile performance through selective targeting of enzymes involved in glycolysis, energy production as well as CO2 hydration.


2021 ◽  
Author(s):  
Martina Aulitto ◽  
Strazzulli Andrea ◽  
Ferdinando Sansone ◽  
Flora Cozzolino ◽  
Maria Monti ◽  
...  

Abstract BackgroundThe spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract.ResultsIn this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as a β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. ConclusionsProbiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes that are commonly used for treatment of gastrointestinal diseases. Moreover, B. coagulans MA-13 can be employed for an eco-friendly production of prebiotics from dairy food waste because of the ability of β-galactosidase to synthesize galacto-oligosaccharides from lactose.


2015 ◽  
Author(s):  
Kok-Gan Chan ◽  
Wen-Si Tan

Enterobacter cancerogenus strain M004 genome size is 5.67 Mb. Here, its luxI homologue, designated as ecnI which is ecnI gene (633 bp) was cloned and overexpressed. Its AHL synthesis activity was verified using the high-resolution liquid chromatography-mass spectrometry analysis revealed the production of N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C8-HSL). The cloning and characterization of luxI homologue of E. cancerogenus strain M004 was firstly reported here.


Sign in / Sign up

Export Citation Format

Share Document