scholarly journals Disruption of the mitochondrial gene orf352 partially restores pollen development in cytoplasmic male sterile rice

2021 ◽  
Author(s):  
Shiho Omukai ◽  
Shin-ich Arimura ◽  
Kinya Toriyama ◽  
Tomohiko Kazama

AbstractPlant mitochondrial genomes sometimes carry cytoplasmic male sterility (CMS)-associated genes. These genes have been harnessed in agriculture to produce high-yielding F1 hybrid seeds in various crops. The gene orf352 was reported to be an RT102-type CMS gene in rice (Oryza sativa), although a causal demonstration of its role in CMS is lacking. Here, we employed mitochondrion-targeted transcription activator-like effector nucleases (mitoTALENs), to knock out orf352 from the mitochondrial genome in the cytoplasmic male sterile rice RT102A. We isolated 18 independent transformation events in RT102A that resulted in genome editing of orf352, including its complete removal from the mitochondrial genome in several plants. Sequence analysis around the mitoTALEN target sites revealed the repair of their induced double-strand breaks via homologous recombination. Near the 5ʹ target site, repair involved sequences identical to orf284, while repair of the 3ʹ target site yielded various new sequences that generated new chimeric genes consisting orf352 fragments. Plants with a new mitochondrial gene encoding amino acids 179 to 352 of ORF352 exhibited the same shrunken pollen grain phenotype as RT102A, whereas plants either lacking orf352 or harboring a new gene encoding amino acids 211 to 352 of ORF352 showed partial rescue of pollen viability and germination, although they failed to set seed. These results demonstrated that disruption of orf352 partially restored pollen development, indicating that amino acids 179 to 210 from ORF352 may contribute to the establishment of pollen abortion.

Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Hoang V Tang ◽  
Ruying Chang ◽  
Daryl R Pring

Abstract Defective nuclear-cytoplasmic interactions leading to aberrant microgametogenesis in sorghum carrying the IS1112C male-sterile cytoplasm occur very late in pollen maturation. Amelioration of this condition, the restoration of pollen viability, involves a novel two-gene gametophytic system, wherein genes designated Rf3 and Rf4 are required for viability of individual gametes. Rf3 is tightly linked to, or represents, a single gene that regulates a transcript processing activity that cleaves transcriptsof orf107, a chimeric mitochondrial open reading frame specific to IS1112C. The mitochondrial gene urf 209 is also subject to nucleus-specific enhanced transcript processing, 5′ to the gene, conferred by a single dominant gene designated Mmt1. Examinations of transcript patterns in F2 and two backcross populations indicated cosegregation of the augmented orf107 and urf209 processing activities in IS1112C. Several sorghum lines that do not restore fertility or confer orf107 transcript processing do exhibit urf209 transcript processing, indicating that the activities are distinguishable. We conclude that the nuclear gene(s) conferring enhanced orf107 and urf209 processing activities are tightly linked in IS1112C. Alternatively, the similarity in apparent regulatory action of the genes may indicate allelic differences wherein the IS1112C Rf3 allele may differ from alleles of maintainer lines by the capability to regulate both orf107 and urf209 processing activities.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 869-879 ◽  
Author(s):  
H Janska ◽  
S A Mackenzie

Abstract Spontaneous reversion to pollen fertility and fertility restoration by the nuclear gene Fr in cytoplasmic male sterile common bean (Phaseolus vulgaris L.) are associated with the loss of a large portion of the mitochondrial genome. To understand better the molecular events responsible for this DNA loss, we have constructed a physical map of the mitochondrial genome of a stable fertile revertant line, WPR-3, and the cytoplasmic male sterile line (CMS-Sprite) from which it was derived. This involved a cosmid clone walking strategy with comparative DNA gel blot hybridizations. Mapping data suggested that the simplest model for the structure of the CMS-Sprite genome consists of three autonomous chromosomes differing only in short, unique regions. The unique region contained on one of these chromosomes is the male sterility-associated 3-kb sequence designated pvs. Based on genomic environments surrounding repeated sequences, we predict that chromosomes can undergo intra- and intermolecular recombination. The mitochondrial genome of the revertant line appeared to contain only two of the three chromosomes; the region containing the pvs sequence was absent. Therefore, the process of spontaneous cytoplasmic reversion to fertility likely involves the disappearance of an entire mitochondrial chromosome. This model is supported by the fact that we detected no evidence of recombination, excision or deletion events within the revertant genome that could account for the loss of a large segment of mitochondrial DNA.


2001 ◽  
Vol 48 (3) ◽  
pp. 711-717 ◽  
Author(s):  
M Rurek ◽  
M Szklarczyk ◽  
N Adamczyk ◽  
B Michalik ◽  
H Augustyniak

A high level of the nucleotide sequence conservation was found for mitochondrial nad3 gene of carrot. Three silent nucleotide substitutions differentiate nad3 open reading frames from cytoplasmic male sterile and male fertile carrots. All these differences are preserved on the RNA level. Partial and silent editing also distinguished both carrots. Three of the C to U conversions were specific to the fertile line. In the two examined carrot lines editing did not affect the mode of alteration of encoded amino acids.


1994 ◽  
Vol 26 (6) ◽  
pp. 1819-1831 ◽  
Author(s):  
Mariana Spassova ◽  
Fran�oise Moneger ◽  
Christopher J. Leaver ◽  
Peter Petrov ◽  
Atanas Atanassov ◽  
...  

2018 ◽  
Vol 95 (4) ◽  
pp. 715-726 ◽  
Author(s):  
Hongwei Xie ◽  
Xiaojue Peng ◽  
Mingjuan Qian ◽  
Yicong Cai ◽  
Xia Ding ◽  
...  

2016 ◽  
Vol 113 (12) ◽  
pp. 3395-3400 ◽  
Author(s):  
Csanad Gurdon ◽  
Zora Svab ◽  
Yaping Feng ◽  
Dibyendu Kumar ◽  
Pal Maliga

We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer from Nicotiana sylvestris into Nicotiana tabacum cells. The alloplasmic N. tabacum line we used carries Nicotiana undulata cytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer from N. sylvestris to N. tabacum could be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility to orf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation.


1989 ◽  
Vol 216 (2-3) ◽  
pp. 395-401 ◽  
Author(s):  
Christiane Fauron ◽  
Marie Havlik ◽  
David Lonsdale ◽  
Lindy Nichols

Sign in / Sign up

Export Citation Format

Share Document