scholarly journals Bi-phasic dynamics of the mitochondrial DNA mutation m.3243A>G in blood: An unbiased, mutation level-dependent model implies positive selection in the germline.

2021 ◽  
Author(s):  
Zoe Fleishmann ◽  
Sarah J. Pickett ◽  
Melissa Franco ◽  
Dylan Aidlen ◽  
Mark Khrapko ◽  
...  

The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A>G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.3243A>G levels decrease in blood with age, and correction representing ~2% annual decline is often applied to account for this change in mutation level. Here we report that recent data indicate the dynamics of m.3243A>G are far more complex and depend on the blood mutation level in a bi-phasic way. As a consequence, the traditional 2% correction, which is adequate on 'average', creates opposite predictive biases at high and low mutation levels. Thus, overall accuracy of traditional correction depends on the proportion of individuals with high and low mutant levels in the dataset. Unbiased age correction is needed to circumvent these drawbacks of the standard model. We propose to abolish both biases by using an approach where correction depends on mutation level in biphasic way, to account for the biphasic dynamics of m.3243A>G in blood. The significance of removing bias was further tested using germline selection as a model, in which we detected mutation patterns consistent with the possibility of positive selection for m.3243A>G. We conclude that use of bi-phasic approach will greatly improve the predictive accuracy of modeling data for changes in mtDNA mutations in the germline and in somatic cells during aging.

2015 ◽  
Vol 26 (4) ◽  
pp. 674-684 ◽  
Author(s):  
Zhe Chen ◽  
Yun Qi ◽  
Stephanie French ◽  
Guofeng Zhang ◽  
Raúl Covian Garcia ◽  
...  

Various human diseases are associated with mitochondrial DNA (mtDNA) mutations, but heteroplasmy—the coexistence of mutant and wild-type mtDNA—complicates their study. We previously isolated a temperature-lethal mtDNA mutation in Drosophila, mt:CoIT300I, which affects the cytochrome c oxidase subunit I (CoI) locus. In the present study, we found that the decrease in cytochrome c oxidase (COX) activity was ascribable to a temperature-dependent destabilization of cytochrome a heme. Consistently, the viability of homoplasmic flies at 29°C was fully restored by expressing an alternative oxidase, which specifically bypasses the cytochrome chains. Heteroplasmic flies are fully viable and were used to explore the age-related and tissue-specific phenotypes of mt:CoIT300I. The proportion of mt:CoIT300I genome remained constant in somatic tissues along the aging process, suggesting a lack of quality control mechanism to remove defective mitochondria containing a deleterious mtDNA mutation. Using a genetic scheme that expresses a mitochondrially targeted restriction enzyme to induce tissue-specific homoplasmy in heteroplasmic flies, we found that mt:CoIT300I homoplasmy in the eye caused severe neurodegeneration at 29°C. Degeneration was suppressed by improving mitochondrial Ca2+ uptake, suggesting that Ca2+ mishandling contributed to mt:CoIT300I pathogenesis. Our results demonstrate a novel approach for Drosophila mtDNA genetics and its application in modeling mtDNA diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Monica De Luise ◽  
Vito Guarnieri ◽  
Claudio Ceccarelli ◽  
Leonardo D’Agruma ◽  
Anna Maria Porcelli ◽  
...  

The Von Hippel-Lindau (VHL) syndrome has been rarely associated with renal oncocytomas, and tumors usually show HIF1α chronic stabilization. By contrast, oncocytomas mainly associated with respiratory chain (RC) defects due to severe mitochondrial DNA (mtDNA) mutations are incapable of stabilizing HIF1α, since oxygen consumption by the RC is dramatically diminished and prolylhydroxylase activity is increased by α-ketoglutarate accumulation following Krebs cycle slowdown. Here, we investigate the cooccurrence of a pseudohypoxic condition with oncocytic transformation in a case of VHL-associated renal oncocytoma. While HIF1α was abundant in nuclei concordantly with defects in VHL, negative staining of its targets carbonic anhydrase IX (CAIX) and glucose transporter GLUT1, usually overexpressed in VHL-associated neoplasms, suggested HIF1α to be present in its inactive (hydroxylated) form. MtDNA sequencing and immunohistochemistry analyses revealed a MT-CO1 stop-gain mutation and cytochrome c oxidase loss. We suggest that a mitochondrial respiration impairment may lead to hyperhydroxylation of the transcription factor, which we confirmed by specific staining of hydroxylated HIF1α. Such inactive form hence accumulated in the VHL-deficient tumor, where it may contribute to the benign nature of the neoplasm. We propose that the protumorigenic role of HIF1α in VHL cancers may be blunted through drugs inhibiting mitochondrial respiratory complexes, such as metformin.


2001 ◽  
Vol 9 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Maurizia Grasso ◽  
Marta Diegoli ◽  
Agnese Brega ◽  
Carlo Campana ◽  
Luigi Tavazzi ◽  
...  

2017 ◽  
Vol 3 (3) ◽  
pp. e160 ◽  
Author(s):  
Sailaja Golla ◽  
Jimin Ren ◽  
Craig R. Malloy ◽  
Juan M. Pascual

Objective:There is a paucity of objective, quantifiable indicators of mitochondrial disease available for clinical and scientific investigation.Methods:To this end, we explore intramyocellular lipid (IMCL) accumulation noninvasively by 7T magnetic resonance spectroscopy (MRS) as a reporter of metabolic dysfunction in MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). We reasoned that mitochondrial dysfunction may impair muscle fat metabolism, resulting in lipid deposition (as is sometimes observed in biopsies), and that MRS is well suited to quantify these lipids.Results:In 10 MELAS participants and relatives, IMCL abundance correlates with percent mitochondrial DNA mutation abundance and with disease severity.Conclusions:These results indicate that IMCL accumulation is a novel potential disease hallmark in MELAS.


2009 ◽  
Vol 390 (3) ◽  
pp. 755-757 ◽  
Author(s):  
Haris Kokotas ◽  
Maria Grigoriadou ◽  
George S. Korres ◽  
Elisabeth Ferekidou ◽  
Eleftheria Papadopoulou ◽  
...  

Mitochondrion ◽  
2019 ◽  
Vol 46 ◽  
pp. 370-379 ◽  
Author(s):  
Ling Xue ◽  
Yaru Chen ◽  
Xiaowen Tang ◽  
Juan Yao ◽  
Huimin Huang ◽  
...  

2021 ◽  
Author(s):  
Daniel Hipps ◽  
Philip Dobson ◽  
Charlotte Warren ◽  
David McDonald ◽  
Andrew Fuller ◽  
...  

Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. These mitochondrial genome variants lead to respiratory chain deficiency and cellular dysfunction. Work with the PolgAmut/PolgAmut mouse model, which has a high mitochondrial DNA mutation rate, showed enhanced levels of age related osteoporosis in affected mice along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts with age, we developed a protocol and analysis framework for imaging mass cytometry (IMC) in bone tissue sections to analyse osteoblasts in situ. We have demonstrated significant increases in complex I deficiency with age in human osteoblasts. This work is consistent with findings from the PolgAmut/PolgAmut mouse model and suggests that respiratory chain deficiency, as a consequence of the accumulation of age related mitochondrial DNA mutations, may have a significant role to play in the pathogenesis of human age related osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document