scholarly journals Transfer learning framework for cell segmentation with incorporation of geometric features

2021 ◽  
Author(s):  
Yinuo Jin ◽  
Alexandre Toberoff ◽  
Elham Azizi

With recent advances in multiplexed imaging and spatial transcriptomic and proteomic technologies, cell segmentation is becoming a crucial step in biomedical image analysis. In recent years, Fully Convolutional Networks (FCN) have achieved great success in nuclei segmentation in in vitro imaging. Nevertheless, it remains challenging to perform similar tasks on in situ tissue images with more cluttered cells of diverse shapes. To address this issue, we propose a novel transfer learning, cell segmentation framework incorporating shape-aware features in a deep learning model, with multi-level watershed and morphological post-processing steps. Our results show that incorporation of geometric features improves generalizability to segmenting cells in in situ tissue images, using solely in vitro images as training data.

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 583 ◽  
Author(s):  
Khang Nguyen ◽  
Nhut T. Huynh ◽  
Phat C. Nguyen ◽  
Khanh-Duy Nguyen ◽  
Nguyen D. Vo ◽  
...  

Unmanned aircraft systems or drones enable us to record or capture many scenes from the bird’s-eye view and they have been fast deployed to a wide range of practical domains, i.e., agriculture, aerial photography, fast delivery and surveillance. Object detection task is one of the core steps in understanding videos collected from the drones. However, this task is very challenging due to the unconstrained viewpoints and low resolution of captured videos. While deep-learning modern object detectors have recently achieved great success in general benchmarks, i.e., PASCAL-VOC and MS-COCO, the robustness of these detectors on aerial images captured by drones is not well studied. In this paper, we present an evaluation of state-of-the-art deep-learning detectors including Faster R-CNN (Faster Regional CNN), RFCN (Region-based Fully Convolutional Networks), SNIPER (Scale Normalization for Image Pyramids with Efficient Resampling), Single-Shot Detector (SSD), YOLO (You Only Look Once), RetinaNet, and CenterNet for the object detection in videos captured by drones. We conduct experiments on VisDrone2019 dataset which contains 96 videos with 39,988 annotated frames and provide insights into efficient object detectors for aerial images.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1230
Author(s):  
Xiaofei Qin ◽  
Chengzi Wu ◽  
Hang Chang ◽  
Hao Lu ◽  
Xuedian Zhang

Medical image segmentation is a fundamental task in medical image analysis. Dynamic receptive field is very helpful for accurate medical image segmentation, which needs to be further studied and utilized. In this paper, we propose Match Feature U-Net, a novel, symmetric encoder– decoder architecture with dynamic receptive field for medical image segmentation. We modify the Selective Kernel convolution (a module proposed in Selective Kernel Networks) by inserting a newly proposed Match operation, which makes similar features in different convolution branches have corresponding positions, and then we replace the U-Net’s convolution with the redesigned Selective Kernel convolution. This network is a combination of U-Net and improved Selective Kernel convolution. It inherits the advantages of simple structure and low parameter complexity of U-Net, and enhances the efficiency of dynamic receptive field in Selective Kernel convolution, making it an ideal model for medical image segmentation tasks which often have small training data and large changes in targets size. Compared with state-of-the-art segmentation methods, the number of parameters in Match Feature U-Net (2.65 M) is 34% of U-Net (7.76 M), 29% of UNet++ (9.04 M), and 9.1% of CE-Net (29 M). We evaluated the proposed architecture in four medical image segmentation tasks: nuclei segmentation in microscopy images, breast cancer cell segmentation, gland segmentation in colon histology images, and disc/cup segmentation. Our experimental results show that Match Feature U-Net achieves an average Mean Intersection over Union (MIoU) gain of 1.8, 1.45, and 2.82 points over U-Net, UNet++, and CE-Net, respectively.


2020 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Ahram Song ◽  
Yongil Kim

Change detection (CD) networks based on supervised learning have been used in diverse CD tasks. However, such supervised CD networks require a large amount of data and only use information from current images. In addition, it is time consuming to manually acquire the ground truth data for newly obtained images. Here, we proposed a novel method for CD in case of a lack of training data in an area near by another one with the available ground truth data. The proposed method automatically entails generating training data and fine-tuning the CD network. To detect changes in target images without ground truth data, the difference images were generated using spectral similarity measure, and the training data were selected via fuzzy c-means clustering. Recurrent fully convolutional networks with multiscale three-dimensional filters were used to extract objects of various sizes from unmanned aerial vehicle (UAV) images. The CD network was pre-trained on labeled source domain data; then, the network was fine-tuned on target images using generated training data. Two further CD networks were trained with a combined weighted loss function. The training data in the target domain were iteratively updated using he prediction map of the CD network. Experiments on two hyperspectral UAV datasets confirmed that the proposed method is capable of transferring change rules and improving CD results based on training data extracted in an unsupervised way.


2020 ◽  
Vol 12 (5) ◽  
pp. 799 ◽  
Author(s):  
Ahram Song ◽  
Jaewan Choi

Remote sensing images having high spatial resolution are acquired, and large amounts of data are extracted from their region of interest. For processing these images, objects of various sizes, from very small neighborhoods to large regions composed of thousands of pixels, should be considered. To this end, this study proposes change detection method using transfer learning and recurrent fully convolutional networks with multiscale three-dimensional (3D) filters. The initial convolutional layer of the change detection network with multiscale 3D filters was designed to extract spatial and spectral features of materials having different sizes; the layer exploits pre-trained weights and biases of semantic segmentation network trained on an open benchmark dataset. The 3D filter sizes were defined in a specialized way to extract spatial and spectral information, and the optimal size of the filter was determined using highly accurate semantic segmentation results. To demonstrate the effectiveness of the proposed method, binary change detection was performed on images obtained from multi-temporal Korea multipurpose satellite-3A. Results revealed that the proposed method outperformed the traditional deep learning-based change detection methods and the change detection accuracy improved using multiscale 3D filters and transfer learning.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2767
Author(s):  
Wenqiong Zhang ◽  
Yiwei Huang ◽  
Jianfei Tong ◽  
Ming Bao ◽  
Xiaodong Li

Low-frequency multi-source direction-of-arrival (DOA) estimation has been challenging for micro-aperture arrays. Deep learning (DL)-based models have been introduced to this problem. Generally, existing DL-based methods formulate DOA estimation as a multi-label multi-classification problem. However, the accuracy of these methods is limited by the number of grids, and the performance is overly dependent on the training data set. In this paper, we propose an off-grid DL-based DOA estimation. The backbone is based on circularly fully convolutional networks (CFCN), trained by the data set labeled by space-frequency pseudo-spectra, and provides on-grid DOA proposals. Then, the regressor is developed to estimate the precise DOAs according to corresponding proposals and features. In this framework, spatial phase features are extracted by the circular convolution calculation. The improvement in spatial resolution is converted to increasing the dimensionality of features by rotating convolutional networks. This model ensures that the DOA estimations at different sub-bands have the same interpretation ability and effectively reduce network model parameters. The simulation and semi-anechoic chamber experiment results show that CFCN-based DOA is superior to existing methods in terms of generalization ability, resolution, and accuracy.


Author(s):  
Kaushal Paneri ◽  
Vishnu TV ◽  
Pankaj Malhotra ◽  
Lovekesh Vig ◽  
Gautam Shroff

Deep neural networks are prone to overfitting, especially in small training data regimes. Often, these networks are overparameterized and the resulting learned weights tend to have strong correlations. However, convolutional networks in general, and fully convolution neural networks (FCNs) in particular, have been shown to be relatively parameter efficient, and have recently been successfully applied to time series classification tasks. In this paper, we investigate the application of different regularizers on the correlation between the learned convolutional filters in FCNs using Batch Normalization (BN) as a regularizer for time series classification (TSC) tasks. Results demonstrate that despite orthogonal initialization of the filters, the average correlation across filters (especially for filters in higher layers) tends to increase as training proceeds, indicating redundancy of filters. To mitigate this redundancy, we propose a strong regularizer, using simple yet effective filter decorrelation. Our proposed method yields significant gains in classification accuracy for 44 diverse time series datasets from the UCR TSC benchmark repository.


Sign in / Sign up

Export Citation Format

Share Document