scholarly journals Exponentiating pixel values for data augmentation to improve deep learning image classification in chest X-rays

2021 ◽  
Author(s):  
Takuma Usuzaki ◽  
Kengo Takahashi ◽  
Daiki Shimokawa ◽  
Kiichi Shibuya
Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


2020 ◽  
Author(s):  
Tuan Pham

Chest X-rays have been found to be very promising for assessing COVID-19 patients, especially for resolving emergency-department and urgent-care-center overcapacity. Deep-learning (DL) methods in artificial intelligence (AI) play a dominant role as high-performance classifiers in the detection of the disease using chest X-rays. While many new DL models have been being developed for this purpose, this study aimed to investigate the fine tuning of pretrained convolutional neural networks (CNNs) for the classification of COVID-19 using chest X-rays. Three pretrained CNNs, which are AlexNet, GoogleNet, and SqueezeNet, were selected and fine-tuned without data augmentation to carry out 2-class and 3-class classification tasks using 3 public chest X-ray databases. In comparison with other recently developed DL models, the 3 pretrained CNNs achieved very high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver-operating-characteristic curve. AlexNet, GoogleNet, and SqueezeNet require the least training time among pretrained DL models, but with suitable selection of training parameters, excellent classification results can be achieved without data augmentation by these networks. The findings contribute to the urgent need for harnessing the pandemic by facilitating the deployment of AI tools that are fully automated and readily available in the public domain for rapid implementation.


Author(s):  
Nassima Dif ◽  
Zakaria Elberrichi

Deep learning methods are characterized by their capacity to learn data representation compared to the traditional machine learning algorithms. However, these methods are prone to overfitting on small volumes of data. The objective of this research is to overcome this limitation by improving the generalization in the proposed deep learning framework based on various techniques: data augmentation, small models, optimizer selection, and ensemble learning. For ensembling, the authors used selected models from different checkpoints and both voting and unweighted average methods for combination. The experimental study on the lymphomas histopathological dataset highlights the efficiency of the MobileNet2 network combined with the stochastic gradient descent (SGD) optimizer in terms of generalization. The best results have been achieved by the combination of the best three checkpoint models (98.67% of accuracy). These findings provide important insights into the efficiency of the checkpoint ensemble learning method for histopathological image classification.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Liang ◽  
Qi Cui ◽  
Xing Luo ◽  
Zhisong Xie

Rock classification is a significant branch of geology which can help understand the formation and evolution of the planet, search for mineral resources, and so on. In traditional methods, rock classification is usually done based on the experience of a professional. However, this method has problems such as low efficiency and susceptibility to subjective factors. Therefore, it is of great significance to establish a simple, fast, and accurate rock classification model. This paper proposes a fine-grained image classification network combining image cutting method and SBV algorithm to improve the classification performance of a small number of fine-grained rock samples. The method uses image cutting to achieve data augmentation without adding additional datasets and uses image block voting scoring to obtain richer complementary information, thereby improving the accuracy of image classification. The classification accuracy of 32 images is 75%, 68.75%, and 75%. The results show that the method proposed in this paper has a significant improvement in the accuracy of image classification, which is 34.375%, 18.75%, and 43.75% higher than that of the original algorithm. It verifies the effectiveness of the algorithm in this paper and at the same time proves that deep learning has great application value in the field of geology.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2184
Author(s):  
Roopa S. Rao ◽  
Divya B. Shivanna ◽  
Kirti S. Mahadevpur ◽  
Sinchana G. Shivaramegowda ◽  
Spoorthi Prakash ◽  
...  

Background: The goal of the study was to create a histopathology image classification automation system that could identify odontogenic keratocysts in hematoxylin and eosin-stained jaw cyst sections. Methods: From 54 odontogenic keratocysts, 23 dentigerous cysts, and 20 radicular cysts, about 2657 microscopic pictures with 400× magnification were obtained. The images were annotated by a pathologist and categorized into epithelium, cystic lumen, and stroma of keratocysts and non-keratocysts. Preprocessing was performed in two steps; the first is data augmentation, as the Deep Learning techniques (DLT) improve their performance with increased data size. Secondly, the epithelial region was selected as the region of interest. Results: Four experiments were conducted using the DLT. In the first, a pre-trained VGG16 was employed to classify after-image augmentation. In the second, DenseNet-169 was implemented for image classification on the augmented images. In the third, DenseNet-169 was trained on the two-step preprocessed images. In the last experiment, two and three results were averaged to obtain an accuracy of 93% on OKC and non-OKC images. Conclusions: The proposed algorithm may fit into the automation system of OKC and non-OKC diagnosis. Utmost care was taken in the manual process of image acquisition (minimum 28–30 images/slide at 40× magnification covering the entire stretch of epithelium and stromal component). Further, there is scope to improve the accuracy rate and make it human bias free by using a whole slide imaging scanner for image acquisition from slides.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 417 ◽  
Author(s):  
Mohammad Farukh Hashmi ◽  
Satyarth Katiyar ◽  
Avinash G Keskar ◽  
Neeraj Dhanraj Bokde ◽  
Zong Woo Geem

Pneumonia causes the death of around 700,000 children every year and affects 7% of the global population. Chest X-rays are primarily used for the diagnosis of this disease. However, even for a trained radiologist, it is a challenging task to examine chest X-rays. There is a need to improve the diagnosis accuracy. In this work, an efficient model for the detection of pneumonia trained on digital chest X-ray images is proposed, which could aid the radiologists in their decision making process. A novel approach based on a weighted classifier is introduced, which combines the weighted predictions from the state-of-the-art deep learning models such as ResNet18, Xception, InceptionV3, DenseNet121, and MobileNetV3 in an optimal way. This approach is a supervised learning approach in which the network predicts the result based on the quality of the dataset used. Transfer learning is used to fine-tune the deep learning models to obtain higher training and validation accuracy. Partial data augmentation techniques are employed to increase the training dataset in a balanced way. The proposed weighted classifier is able to outperform all the individual models. Finally, the model is evaluated, not only in terms of test accuracy, but also in the AUC score. The final proposed weighted classifier model is able to achieve a test accuracy of 98.43% and an AUC score of 99.76 on the unseen data from the Guangzhou Women and Children’s Medical Center pneumonia dataset. Hence, the proposed model can be used for a quick diagnosis of pneumonia and can aid the radiologists in the diagnosis process.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Qinghe Zheng ◽  
Mingqiang Yang ◽  
Xinyu Tian ◽  
Nan Jiang ◽  
Deqiang Wang

Nowadays, deep learning has achieved remarkable results in many computer vision related tasks, among which the support of big data is essential. In this paper, we propose a full stage data augmentation framework to improve the accuracy of deep convolutional neural networks, which can also play the role of implicit model ensemble without introducing additional model training costs. Simultaneous data augmentation during training and testing stages can ensure network optimization and enhance its generalization ability. Augmentation in two stages needs to be consistent to ensure the accurate transfer of specific domain information. Furthermore, this framework is universal for any network architecture and data augmentation strategy and therefore can be applied to a variety of deep learning based tasks. Finally, experimental results about image classification on the coarse-grained dataset CIFAR-10 (93.41%) and fine-grained dataset CIFAR-100 (70.22%) demonstrate the effectiveness of the framework by comparing with state-of-the-art results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohamed Elgendi ◽  
Muhammad Umer Nasir ◽  
Qunfeng Tang ◽  
David Smith ◽  
John-Paul Grenier ◽  
...  

Chest X-ray imaging technology used for the early detection and screening of COVID-19 pneumonia is both accessible worldwide and affordable compared to other non-invasive technologies. Additionally, deep learning methods have recently shown remarkable results in detecting COVID-19 on chest X-rays, making it a promising screening technology for COVID-19. Deep learning relies on a large amount of data to avoid overfitting. While overfitting can result in perfect modeling on the original training dataset, on a new testing dataset it can fail to achieve high accuracy. In the image processing field, an image augmentation step (i.e., adding more training data) is often used to reduce overfitting on the training dataset, and improve prediction accuracy on the testing dataset. In this paper, we examined the impact of geometric augmentations as implemented in several recent publications for detecting COVID-19. We compared the performance of 17 deep learning algorithms with and without different geometric augmentations. We empirically examined the influence of augmentation with respect to detection accuracy, dataset diversity, augmentation methodology, and network size. Contrary to expectation, our results show that the removal of recently used geometrical augmentation steps actually improved the Matthews correlation coefficient (MCC) of 17 models. The MCC without augmentation (MCC = 0.51) outperformed four recent geometrical augmentations (MCC = 0.47 for Data Augmentation 1, MCC = 0.44 for Data Augmentation 2, MCC = 0.48 for Data Augmentation 3, and MCC = 0.49 for Data Augmentation 4). When we retrained a recently published deep learning without augmentation on the same dataset, the detection accuracy significantly increased, with a χMcNemar′s statistic2=163.2 and a p-value of 2.23 × 10−37. This is an interesting finding that may improve current deep learning algorithms using geometrical augmentations for detecting COVID-19. We also provide clinical perspectives on geometric augmentation to consider regarding the development of a robust COVID-19 X-ray-based detector.


2020 ◽  
Author(s):  
Tuan Pham

Chest X-rays have been found to be very promising for assessing COVID-19 patients, especially for resolving emergency-department and urgent-care-center overcapacity. Deep-learning (DL) methods in artificial intelligence (AI) play a dominant role as high-performance classifiers in the detection of the disease using chest X-rays. While many new DL models have been being developed for this purpose, this study aimed to investigate the fine tuning of pretrained convolutional neural networks (CNNs) for the classification of COVID-19 using chest X-rays. Three pretrained CNNs, which are AlexNet, GoogleNet, and SqueezeNet, were selected and fine-tuned without data augmentation to carry out 2-class and 3-class classification tasks using 3 public chest X-ray databases. In comparison with other recently developed DL models, the 3 pretrained CNNs achieved very high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver-operating-characteristic curve. AlexNet, GoogleNet, and SqueezeNet require the least training time among pretrained DL models, but with suitable selection of training parameters, excellent classification results can be achieved without data augmentation by these networks. The findings contribute to the urgent need for harnessing the pandemic by facilitating the deployment of AI tools that are fully automated and readily available in the public domain for rapid implementation.


Sign in / Sign up

Export Citation Format

Share Document