scholarly journals Parallel representation of context and multiple context-dependent values in ventro-medial prefrontal cortex

2021 ◽  
Author(s):  
Nir Moneta ◽  
Mona M. Garvert ◽  
Hauke R. Heekeren ◽  
Nicolas W Schuck

Value representations in ventromedial prefrontal-cortex (vmPFC) are known to guide decisions. But how preferable available options are depends on one's current task. Goal-directed behavior, which involves changing between different task-contexts, therefore requires to know how valuable the same options will be in different contexts. We tested whether multiple task-dependent values influence behavior and asked if they are integrated into a single value representation or are co-represented in parallel within vmPFC signals. Thirty five participants alternated between tasks in which stimulus color or motion predicted rewards. Our results provide behavioral and neural evidence for co-activation of both contextually-relevant and -irrelevant values, and suggest a link between multivariate neural representations and the influence of the irrelevant context and its associated value on behavior. Importantly, current task context could be decoded from the same region, and better context-decodability was associated with stronger (relevant-)value representations. Evidence for choice conflicts was found only in the motor cortex, where the competing values are likely resolved into action.

2021 ◽  
Vol 7 (15) ◽  
pp. eabd5363
Author(s):  
G. Castegnetti ◽  
M. Zurita ◽  
B. De Martino

Value is often associated with reward, emphasizing its hedonic aspects. However, when circumstances change, value must also change (a compass outvalues gold, if you are lost). How are value representations in the brain reshaped under different behavioral goals? To answer this question, we devised a new task that decouples usefulness from its hedonic attributes, allowing us to study flexible goal-dependent mapping. Here, we show that, unlike sensory cortices, regions in the prefrontal cortex (PFC)—usually associated with value computation—remap their representation of perceptually identical items according to how useful the item has been to achieve a specific goal. Furthermore, we identify a coding scheme in the PFC that represents value regardless of the goal, thus supporting generalization across contexts. Our work questions the dominant view that equates value with reward, showing how a change in goals triggers a reorganization of the neural representation of value, enabling flexible behavior.


2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Masaki Isoda

As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others’ emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Briac Halbout ◽  
Andrew T Marshall ◽  
Ali Azimi ◽  
Mimi Liljeholm ◽  
Stephen V Mahler ◽  
...  

Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.


2020 ◽  
Author(s):  
Yaelan Jung ◽  
Dirk B. Walther

AbstractNatural scenes deliver rich sensory information about the world. Decades of research has shown that the scene-selective network in the visual cortex represents various aspects of scenes. It is, however, unknown how such complex scene information is processed beyond the visual cortex, such as in the prefrontal cortex. It is also unknown how task context impacts the process of scene perception, modulating which scene content is represented in the brain. In this study, we investigate these questions using scene images from four natural scene categories, which also depict two types of global scene properties, temperature (warm or cold), and sound-level (noisy or quiet). A group of healthy human subjects from both sexes participated in the present study using fMRI. In the study, participants viewed scene images under two different task conditions; temperature judgment and sound-level judgment. We analyzed how different scene attributes (scene categories, temperature, and sound-level information) are represented across the brain under these task conditions. Our findings show that global scene properties are only represented in the brain, especially in the prefrontal cortex, when they are task-relevant. However, scene categories are represented in the brain, in both the parahippocampal place area and the prefrontal cortex, regardless of task context. These findings suggest that the prefrontal cortex selectively represents scene content according to task demands, but this task selectivity depends on the types of scene content; task modulates neural representations of global scene properties but not of scene categories.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriele Bellucci ◽  
Felix Molter ◽  
Soyoung Q. Park

AbstractTheoretical accounts propose honesty as a central determinant of trustworthiness impressions and trusting behavior. However, behavioral and neural evidence on the relationships between honesty and trust is missing. Here, combining a novel paradigm that successfully induces trustworthiness impressions with functional MRI and multivariate analyses, we demonstrate that honesty-based trustworthiness is represented in the posterior cingulate cortex, dorsolateral prefrontal cortex and intraparietal sulcus. Crucially, brain signals in these regions predict individual trust in a subsequent social interaction with the same partner. Honesty recruited the ventromedial prefrontal cortex (VMPFC), and stronger functional connectivity between the VMPFC and temporoparietal junction during honesty encoding was associated with higher trust in the subsequent interaction. These results suggest that honesty signals in the VMPFC are integrated into trustworthiness beliefs to inform present and future social behaviors. These findings improve our understanding of the neural representations of an individual’s social character that guide behaviors during interpersonal interactions.


2019 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Aarron Phensy ◽  
Sven Kroener

The term “working memory” (WM) describes the ability to maintain and manipulate information in the memory for the guidance of goal-directed behavior [...]


2000 ◽  
Vol 83 (3) ◽  
pp. 1733-1750 ◽  
Author(s):  
Daniel Durstewitz ◽  
Jeremy K. Seamans ◽  
Terrence J. Sejnowski

The prefrontal cortex (PFC) is critically involved in working memory, which underlies memory-guided, goal-directed behavior. During working-memory tasks, PFC neurons exhibit sustained elevated activity, which may reflect the active holding of goal-related information or the preparation of forthcoming actions. Dopamine via the D1 receptor strongly modulates both this sustained (delay-period) activity and behavioral performance in working-memory tasks. However, the function of dopamine during delay-period activity and the underlying neural mechanisms are only poorly understood. Recently we proposed that dopamine might stabilize active neural representations in PFC circuits during tasks involving working memory and render them robust against interfering stimuli and noise. To further test this idea and to examine the dopamine-modulated ionic currents that could give rise to increased stability of neural representations, we developed a network model of the PFC consisting of multicompartment neurons equipped with Hodgkin-Huxley-like channel kinetics that could reproduce in vitro whole cell and in vivo recordings from PFC neurons. Dopaminergic effects on intrinsic ionic and synaptic conductances were implemented in the model based on in vitro data. Simulated dopamine strongly enhanced high, delay-type activity but not low, spontaneous activity in the model network. Furthermore the strength of an afferent stimulation needed to disrupt delay-type activity increased with the magnitude of the dopamine-induced shifts in network parameters, making the currently active representation much more stable. Stability could be increased by dopamine-induced enhancements of the persistent Na+and N-methyl-d-aspartate (NMDA) conductances. Stability also was enhanced by a reductionin AMPA conductances. The increase in GABAA conductances that occurs after stimulation of dopaminergic D1 receptors was necessary in this context to prevent uncontrolled, spontaneous switches into high-activity states (i.e., spontaneous activation of task-irrelevant representations). In conclusion, the dopamine-induced changes in the biophysical properties of intrinsic ionic and synaptic conductances conjointly acted to highly increase stability of activated representations in PFC networks and at the same time retain control over network behavior and thus preserve its ability to adequately respond to task-related stimuli. Predictions of the model can be tested in vivo by locally applying specific D1 receptor, NMDA, or GABAA antagonists while recording from PFC neurons in delayed reaction-type tasks with interfering stimuli.


Author(s):  
Earl K. Miller ◽  
Timothy J. Buschman

The prefrontal cortex is a source of internal control of attention as it captures three important components of an executive controller. First, it provides top-down selection of neural representations through descending projections, This top-down input may act by increasing the synchrony of local neural populations, enhancing their connectivity, and boosting the transmission of information. Second, intelligent top-down control of behaviour requires integrating diverse information. Neural representations in prefrontal cortex capture this breadth of information: representing anything from the specific contents of working memory to abstract categories and rules. Third, through reciprocal connections with the basal ganglia, prefrontal cortex neurons are ideally situated to learn the ‘rules’ of behaviour that allow us to know what to attend to in a given situation. These connections may support an iterative, bootstrapping, process that allows for increasingly complex rules to be learned. The prefrontal cortex acts as a generalized executive controller, acting through mechanisms such as attention, to guide thoughts and behaviour.


Sign in / Sign up

Export Citation Format

Share Document