Utilization of an industrial waste product to develop a corrosion protective coating to steel reinforcement in concrete

2003 ◽  
pp. 263-271
2016 ◽  
Vol 7 (4) ◽  
pp. 1814-1824 ◽  
Author(s):  
Kyu-Ho Han ◽  
Chang-Hyun Lee ◽  
Mikio Kinoshita ◽  
Chan-Ho Oh ◽  
Ken-ichiro Shimada ◽  
...  

The industrial waste product spent turmeric remarkably reduced obesity in rats fed a high-fat diet. The mesentery adipocyte' size in rats fed a STP diet was smaller than that in rats fed a control diet with or without antibiotic cocktail.


2013 ◽  
Vol 747 ◽  
pp. 445-448 ◽  
Author(s):  
Benjaporn Inseemeesak ◽  
Aphichart Rodchanarowan

In this study aluminium dross, an industrial waste product from the aluminum casting industry which contains mostly aluminum, aluminium oxide, and volatile gases such as ammonia (NH3), methane (CH4) and hydrogen (H2). In this study it is used as an admixture in cement paste to observe its effects on the porosity and bulk density of the material. The parameters used in the study include; the effects when different quantities of aluminium dross are added to portland cement (portland cement:aluminium dross by weight; 1: 0.05, 1: 0.10, and 1: 0.20) and the effect of different sized particles of aluminium dross (average diameter of aluminium dross particles; <45, 60, and 90 μm) on porosity and bulk density of cement paste. According to the study, as the amount of aluminium dross content in cement paste increases, the area fraction of porosity in the cement paste increases; yet the bulk density of cement paste decreases. In addition, when the particle size of aluminium dross decreases both of the pores size in the cement paste and bulk density of cement paste decrease.


1984 ◽  
Vol 77 (2-3) ◽  
pp. 395-399 ◽  
Author(s):  
T. C. Zwick ◽  
M. F. Arthur ◽  
D. A. Tolle ◽  
P. Van Voris

2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


2021 ◽  
Author(s):  
Junhui Li ◽  
Paul Dijkstra ◽  
Qihong Lu ◽  
Shanquan Wang ◽  
Shaohua Chen ◽  
...  

AbstractEffective degradation of N,N-Dimethylformamide (DMF), an important industrial waste product, is challenging as only few bacterial isolates are known to be capable of degrading DMF. Aerobic remediation of DMF has typically been used, whereas anoxic remediation attempts are recently made, using nitrate as one electron acceptor, and ideally include methane as a byproduct. Here, we analyzed 20,762 complete genomes and 28 constructed draft genomes for the genes associated with DMF degradation. We identified 952 genomes that harbor genes involved in DMF degradation, expanding the known diversity of prokaryotes with these metabolic capabilities. Our findings suggest acquisition of DMF-degrading gene via plasmids are important in the order Rhizobiales and genus Paracoccus, but not in most other lineages. Degradation pathway analysis reveals that most putative DMF degraders using aerobic Pathway I will accumulate methylamine intermediate, while members of Paracoccus, Rhodococcus, Achromobacter, and Pseudomonas could potentially mineralize DMF completely under aerobic conditions. The aerobic DMF degradation via Pathway II is more common than thought and is primarily present in α-and β-Proteobacteria and Actinobacteria. Most putative DMF degraders could grow with nitrate anaerobically (Pathway III), however, genes for the use of methyl-CoM to produce methane were not found. These analyses suggest that microbial consortia could be more advantageous in DMF degradation than pure culture, particularly for methane production under the anaerobic condition. The identified genomes and plasmids form an important foundation for optimizing bioremediation of DMF-containing wastewaters.ImportanceDMF is extensively used as a solvent in industries, and is classified as a probable carcinogen. DMF is a refractory compound resistant to degradation, and until now, only few bacterial isolates have been reported to degrade DMF. To achieve effective microbial degradation of DMF from wastewater, it is necessary to identify genomic diversity with the potential to degrade DMF and characterize the genes involved in two aerobic degradation pathways and potential anaerobic degradation for methane production. A wide diversity of organisms has the potential to degrade DMF. Plasmid-mediated degradation of DMF is important for Rhizobiales and Paracoccus. Most DMF degraders could grow anaerobically with nitrate as electron acceptor, while co-cultures are required to complete intermediate methanogenesis for methane production. This is the first genomics-based global investigation into DMF degradation pathways. The genomic database generated by this study provides an important foundation for the bioremediation of DMF in industrial waste waters.Abstract Figure


2019 ◽  
Vol 6 (3) ◽  
pp. 180748 ◽  
Author(s):  
Stephanie L. Mathews ◽  
Mary Jane Epps ◽  
R. Kevin Blackburn ◽  
Michael B. Goshe ◽  
Amy M. Grunden ◽  
...  

A citizen science project found that the greenhouse camel cricket ( Diestrammena asynamora ) is common in North American homes. Public response was to wonder ‘what good are they anyway?’ and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical and biofuel industries. We screened gut bacteria of greenhouse camel crickets and another household insect, the hide beetle ( Dermestes maculatus ) for the ability to grow on and degrade lignocellulose components as well as the lignocellulose-derived industrial waste product black liquor. From three greenhouse camel crickets and three hide beetles, 14 bacterial strains were identified that were capable of growth on lignocellulosic components, including lignin. Cedecea lapagei was selected for further study due to growth on most lignocellulose components. The C. lapagei secretome was identified using LC/MS/MS analysis. This work demonstrates a novel source of lignocellulose-degrading bacteria and introduces an effective workflow to identify bacterial enzymes for transforming industrial waste into value-added products. More generally, our research suggests the value of ecologically guided discovery of novel organisms.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3008 ◽  
Author(s):  
Michalska ◽  
Wojdyło ◽  
Majerska ◽  
Lech ◽  
Brzezowska

Plum pomace, an agro-industrial waste product has received attention due to the worldwide popularity of plums. During convection, the content of flavan-3-ols decrease, except drying at 90 °C, whereas the content of i.e. chlorogenic, 3-p- and 4-p-coumaroylquinic acids, quercetin rutinoside, and galactoside was observed to increase along with the increase in process temperature. The highest content of all identified polyphenols was found in plum pomace powders obtained using a combination of convective at 90 °C and microwave vacuum drying (MVD) at 120 W, whereas the highest retention of the group consisted of phenolic acids, flavonols, and anthocyanins was noted when CD 70 °C/MVD 120 W was used, pointing to a strong influence of the type of polyphenols on their changes caused by drying. The correlations between TEAC ABTS and the sum of flavonoids (r = 0.634) and anthocyanins (r = 0.704) were established. The multiple regression analysis showed that polyphenol content was more strongly affected by drying time than by maximum temperature, whereas antioxidant capacity was more influenced by maximum temperature of sample than by drying time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Franziska Klimpel ◽  
Michael Bau ◽  
Torsten Graupner

AbstractScandium is a critical raw material that is essential for the EU economy because of its potential application in enabling technologies such as fuel cells and lightweight materials. As there is currently no secure supply of Sc, several projects worldwide evaluate potential Sc sources. While elsewhere in Europe emphasis is placed upon secondary resources such as red mud, we investigated the potential of industrial garnet sand and its waste products. Since Sc readily substitutes for Mg and Fe in the crystal lattice of garnet, the garnet minerals almandine and pyrope, in particular, may show high Sc concentrations. Garnet sand, after being used as an abrasive in the cutting and sandblasting industry, is recycled several times before it is finally considered waste which eventually must be disposed of. Extraction of Sc (and rare earth elements, REE) from such garnet sand may generate added value and thereby reduce disposal cost. The studied garnet sands from different mines in Australia, India and the U.S., and industrial garnet sands commercially available in Germany from different suppliers show average Sc concentrations of 93.7 mg/kg and 90.7 mg/kg, respectively, i.e. similar to red mud. Our data also show that “fresh” and recycled garnet sands yield similar Sc concentrations. Within the framework of a minimum-waste approach, it may be feasible to utilize the industrial waste-product “garnet sand” as an unconventional source of Sc and REE, that reduces disposal cost.


Sign in / Sign up

Export Citation Format

Share Document