scholarly journals Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood

2021 ◽  
Author(s):  
Jacqueline HY Siu ◽  
Michael J Pitcher ◽  
Thomas J Tull ◽  
William Guesdon ◽  
Lucia Montorsi ◽  
...  

B cells generate antibodies that are essential for immune protection. Major events driving B cell responses occur in lymphoid tissues, which guide antigen acquisition and support cellular interactions, yet complexities of B cell subsets in human lymphoid tissues are poorly understood. Here we perform undirected, global profiling of B cells in matched human lymphoid tissues from deceased transplant organ donors and tracked dissemination of B cell clones. In addition to identifying unanticipated features of tissue-based B cell differentiation, we resolve two clonally independent subsets of marginal zone B cells that differ in cell surface and transcriptomic profiles, tendency to disseminate, distribution bias within splenic marginal zone microenvironment and immunoglobulin repertoire diversity and hypermutation frequency. Each subset is represented in spleen, gut-associated lymphoid tissue, mesenteric lymph node, and also blood. Thus, we provide clarity and diffuse controversy surrounding human MZB - the 'elephant in the room' of human B cell biology.

2021 ◽  
Author(s):  
Marina Boudigou ◽  
Magalie Michée-Cospolite ◽  
Patrice Hémon ◽  
Alexis Grasseau ◽  
Christelle Le Dantec ◽  
...  

Immunological memory is essential for effective immune protection upon antigen rechallenge. Memory B cells encompass multiple subsets, heterogeneous in terms of phenotypes, origins and precursors, anatomical localization, and functional responses. B-cell responses are conditioned by micro-environmental signals, including cytokines. Here, we analyzed in vitro the effects of two cytokines implicated in B-cell differentiation, interferon-alpha (IFN-α) and interleukin (IL)-21, on the early functional response of four different mature B-cell subsets (IgD- CD27- naive, IgD+ CD27+ unswitched, IgD- CD27+ switched and double-negative B cells). The dual response of naive and memory B cells to IL-21 allowed us to uncover a unique IgD+ CD27- CD10- B-cell population (referred to as NARB+) characterized by the expression of marginal zone B-cell markers CD45RB and CD1c. Similar to memory B cells, NARB+ cells were in a pre-activated state, allowing them to rapidly differentiate into plasmablasts upon innate signals while maintaining their susceptibility to IL-21 activation-induced apoptosis as observed for the naive compartment. Both in-depth phenotypic analysis of circulating B cells, and identification of these cells in spleen, tonsil and gut-associated lymphoid tissues, supported that NARB+ are uncommitted precursors of human marginal zone B cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 565-565
Author(s):  
Davide Bagnara ◽  
Margherita Squillario ◽  
David Kipling ◽  
Thierry Mora ◽  
Aleksandra Walczak ◽  
...  

Abstract In humans, whether B cells with the IgM+IgD+CD27+ phenotype represent an independent lineage involved in T-independent responses, similar to mouse marginal zone B cells, or whether they are part of the germinal center-derived memory B-cell pool generated during responses to T-dependent antigens, is still a debated issue. To address this question, we performed high-throughput Ig sequencing of B-cell subsets from paired blood and spleen samples and analyzed the clonal relationships between them. We isolated and analyzed 3 different B cell subsets based on CD27 and IgD staining from both blood and spleen: IgD+CD27+ (MZ) - amplified with Cmu primers IgD-CD27+ (switched and IgM-only) with Cmu, Cgamma and Calpha primers IgD-CD27- (CD27- memory or double-negative DN) with the same three primers We obtained 95729 unique sequences that clustered in 49199 different clones: 1125 clones were shared between blood and spleen of the same B-cell subset, and 1681 clones were shared between different subsets, allowing us to trace their relationships. We analyzed these clones that share sequences from different subsets/tissues for their mutation frequency distribution, CDR3-length, and VH/JH family usage, and compared these different characteristics with the bulk of sequences from their respective subset of origin. The analysis of clones shared between blood and spleen for switched IgG/IgA and for MZ subsets suggests different recirculation dynamics. For switched cells, the blood appears to be a mixture of splenic and other lymphoid tissues B cells. For MZ B cells in contrast, the blood appear to be only composed of a subgroup of the splenic repertoire, in agreement with the observation that marginal zone B cells recirculate and are mainly generated in the spleen. Clonal relationships between the IgM clones (originating from the MZ, IgM-only and double negative compartments) show that the clones involved display the characteristics of IgM-only B cells whatever their subset of origin, even in the case of the paired MZ/double-negative sequences that were not supposed to include IgM-only sequences. We therefore conclude that the clones shared between the various IgM subsets do not represent b between them, but rather correspond to a heterogeneous phenotype of the IgM-only population that concerns both IgD and CD27 expression, leading to a partial overlap with the MZ and double-negative gates. Clones shared between the MZ and the switched IgG and IgA compartment also show, for their IgM part, the mutation and repertoire characteristics of IgM-only cells and not of MZ B cells, reinforcing the conclusion that IgM-only are true memory B cells, and constitute the only subset showing clonal relationships with switched memory B cells. In summary, we report that MZ B cells have different recirculation characteristics and do not show real clonal relationships with IgM-only and switched memory B cells, in agreement with the notion that they represent a distinct differentiation pathway. In contrast, the only precursor-product relationship between IgM memory and switched B cells appear to concern a B cell subset that has been described as "IgM-only", but appears to have a more heterogeneous expression of IgD than previously reported and therefore contribute to 3-15% of the MZ compartment. Searching for markers that would permit to discriminate between marginal zone and germinal center-derived IgM memory B cells is obviously required to further delineate their respective function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3780-3792 ◽  
Author(s):  
Gleb Turchinovich ◽  
Thi Thanh Vu ◽  
Friederike Frommer ◽  
Jan Kranich ◽  
Sonja Schmid ◽  
...  

Abstract Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4996-4996
Author(s):  
Franklin Fuh ◽  
Reina Fuji ◽  
Kirsten A Poon ◽  
Dongwei Li ◽  
Clarissa David ◽  
...  

Abstract CD22 is a B cell-specific glycoprotein expressed on the cell surface of all mature B cells. A candidate therapeutic anti-CD22 antibody, 10F4v3, was conjugated to the anti-mitotic agent maytansine (10F4v3-DM1). DM1 disrupts cellular mitosis through inhibition of tubulin polymerization when internalized into cells. The anti-CD22 DM1 conjugate was shown to have significant potency in preclinical efficacy models of NHL. In order to further characterize this antibody-drug conjugate in preclinical studies, we first evaluated the binding characteristics of the 10F4v3 to peripheral blood B cells from various geographical sources of cynomolgus monkeys. 10F4v3 bound to peripheral blood B cells from all cynomolgus monkeys of Indonesian and Mauritian origins, but displayed only limited binding to cynomolgus monkeys of Chinese and Cambodian origins. Therefore, further pre-clinical evaluation of 10F4v3-DM1 was conducted in Indonesian cynomolgus monkeys to examine the safety, pharmacokinetic, and pharmacodynamic effects in monkeys dosed at 10, 20, and 30 mg/kg (2000, 4000, and 6000 mg/m2 DM1). Pharmacodynamic assessments of peripheral blood and lymphoid tissues included examination of B cells, B cell subsets, CD4+ T cells, CD8+ T cells, and CD3−CD20− (NK) cells. B cell subsets included CD20+, CD20+CD21+, CD20+CD21−, CD20+CD21+CD27+, CD20+CD21+CD27−, and CD20+CD21high lymphocytes which are phenotypically similar to human B cells, mature B cells, germinal center B cells, memory B cells, naïve B cells, and marginal zone B cells, respectively. B cells and B cell subsets were substantially depleted in peripheral blood at all doses, with no apparent dose-dependent effects. In lymphoid tissue, B cells were also depleted, with substantial depletion of CD20+CD21− and CD20+CD21high B cell subsets in spleen and bone marrow. Based on the nonclinical data, 10F4v3-DM1 exhibits an encouraging pharmacodynamic profile that supports clinical development for the potential treatment of non-Hodgkin’s lymphoma.


Author(s):  
Deborah Dunn–Walters ◽  
Christian Thiede ◽  
Birgit Alpen ◽  
Jo Spencer

During the B–cell response to T–cell–dependent antigens, the B cells undergo a rapid proliferative phase in the germinal centre. This is accompanied by the introduction of mutations into the immunoglobulin (Ig) variable region (V) genes. The B cells are then selected according to the affinity of the encoded immunoglobulin for antigen, resulting in affinity maturation of the response. Analysis of mutations in IgV genes has given insight into the history of individual B cells and their malignancies. In most cases, analysis of mutations confirms classifications of B–cell lineage designated by studies of cellular morphology and surface antigen expression. However, of particular interest is the subdivision of groups of malignancies by analysis of somatic hypermutation. It is now apparent that there are two subsets of chronic lymphocytic leukaemia (CLL), one with a low load of mutations and poor prognosis, and one with a heavy load of mutations with a much more favourable prognosis. In addition, in Burkitt's lymphoma, sporadic and endemic subtypes are now considered possibly to have a different pathogenesis, reflected in differences in the numbers of mutations. Hodgkin's disease, which was a mystery for many years, has now been shown to be a B–cell tumour. Although in many cases the Ig genes are crippled by somatic hypermutation, it is thought that failure to express Ig is more likely to be associated with problems of transcription. It has been proposed that the distribution of mutations in a B–cell lymphoma can be used to determine whether a lymphoma is selected. We have investigated the load and distribution of mutations in one group of lymphomas–marginal zone B–cell lymphomas of mucosa–associated lymphoid tissues (MALT–type lymphoma), which are dependent on Helicobacter pylori for disease progression, to investigate the limits of information that can be derived from such studies. Comparison of the load of mutations demonstrates that these tumours have approximately the same load of mutations as normal mucosal marginal zone B cells from the Peyer's patches and mucosal plasma cells. This is consistent with the origin of these cells from mucosal marginal zone B cells with plasma cell differentiation. To investigate selection in MALT lymphomas we compared a region of the framework region three in ten MALT lymphomas which use the V H4 family, with the same codons in groups of V H4 genes that are out of frame between V and J. The latter accumulate mutations but are not used and are not selected. A group of V H4 genes are in–frame between V and J were also included for comparison. There were no obvious differences in the distribution of mutations between the groups of genes; the same hot spots and cold spots were apparent in each. In the MALT lymphomas, selection was apparent in the framework regions only and the tendency was to conserve. We therefore feel that there is selection to conserve antibody structure and that this does not reflect selection for antigen. We do not believe that antigen selection can be deduced reliably from sequence information alone. It is possible that somatic hypermutation could be a cause of malignancy since it has been shown that the process may generate DNA strand breaks and is known to be able to generate insertions and deletions. Such events may mediate the translocation of genes—a process that is pivotal in the evolution of many lymphomas.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3684-3692 ◽  
Author(s):  
Brunangelo Falini ◽  
Enrico Tiacci ◽  
Alessandra Pucciarini ◽  
Barbara Bigerna ◽  
Julia Kurth ◽  
...  

AbstractIRTA1 (immunoglobulin superfamily receptor translocation-associated 1) is a novel surface B-cell receptor related to Fc receptors, inhibitory receptor superfamily (IRS), and cell adhesion molecule (CAM) family members and we mapped for the first time its distribution in human lymphoid tissues, using newly generated specific antibodies. IRTA1 was selectively and consistently expressed by a B-cell population located underneath and within the tonsil epithelium and dome epithelium of Peyer patches (regarded as the anatomic equivalents of marginal zone). Similarly, in mucosa-associated lymphoid tissue (MALT) lymphomas IRTA1 was mainly expressed by tumor cells involved in lympho-epithelial lesions. In contrast, no or a low number of IRTA1+ cells was usually observed in the marginal zone of mesenteric lymph nodes and spleen. Interestingly, monocytoid B cells in reactive lymph nodes were strongly IRTA1+. Tonsil IRTA1+ cells expressed the memory B-cell marker CD27 but not mantle cell-, germinal center-, and plasma cell-associated molecules. Polymerase chain reaction (PCR) analysis of single tonsil IRTA1+ cells showed they represent a mixed B-cell population carrying mostly mutated, but also unmutated, IgV genes. The immunohistochemical finding in the tonsil epithelial areas of aggregates of IRTA1+ B cells closely adjacent to plasma cells surrounding small vessels suggests antigen-triggered in situ proliferation/differentiation of memory IRTA1+ cells into plasma cells. Collectively, these results suggest a role of IRTA1 in the immune function of B cells within epithelia. (Blood. 2003;102: 3684-3692)


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2800-2808 ◽  
Author(s):  
Karoline Stein ◽  
Michael Hummel ◽  
Petra Korbjuhn ◽  
Hans-Dieter Foss ◽  
Ioannis Anagnostopoulos ◽  
...  

Monocytoid B cells represent a morphologically conspicuous B-cell population that constantly occurs in Toxoplasma gondii-induced Piringer’s lymphadenopathy. Although widely believed to be closely related to splenic marginal zone B cells, neither this relationship, nor the B-cell differentiation stage of monocytoid B cells, nor their cellular precursors have been established. We have therefore examined monocytoid B cells for their expression of B-cell differentiation markers and the Ig isotypes at the RNA and protein level as well as for rearranged Ig heavy chain (H) genes and somatic mutations within the variable (V) region. The results obtained were compared with the corresponding features of other B-cell populations. The monocytoid B cells displayed immunophenotypical differences to all other B-cell populations. IgM and IgD expression was absent from most monocytoid B cells at the RNA and protein levels. Unrelated (polyclonal) Ig rearrangements were found in 85 of the 95 cells studied. Seventy-four percent of the rearranged VH genes were devoid of somatic mutations, whereas the remaining 26% carried a low number of somatic mutations. The majority of these showed no significant signs of antigen selection. This finding in conjunction with the predominantly unrelated Ig gene rearrangements indicates that most monocytoid B cells arise not by clonal proliferation but by transformation of polyclonal B cells. The B cells undergoing a monocytoid B-cell transformation are in the majority (74%) naive B cells, and only a minority are (26%) non–antigen-selected postgerminal center B cells. Thus, our data show that monocytoid B cells represent a distinct B-cell subpopulation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 46-47
Author(s):  
Andrea Härzschel ◽  
Peter William Krenn ◽  
Elisabeth Bayer ◽  
Simone Tangermann ◽  
Geoffroy Andrieux ◽  
...  

Introduction The development and maturation of B cells is highly dependent on signals provided by the microenvironment of the lymphatic organs. As B cells move from one developmental stage and niche to the next, the integrin family of adhesion molecules provides important cues for their correct positioning and retention. The integrin adaptor protein Kindlin-3 (encoded by the Fermt3 gene) regulates integrin activity and function in a wide range of hematopoietic cell types. In this study, we aimed to define its precise role in the development and function of the different murine B cell subsets. Methods We crossed a Fermt3flox/flox mb1-cre mouse strain (hereforth called K3ΔB mice), harboring a B cell specific Kindlin-3 deletion. B cell subsets in the different lymphoid organs of these K3ΔB mice and control littermates were defined by multicolor flow cytometry. Adoptive transfer, microscopy and real-time flow cytometry were used to analyze the different steps of integrin activation. A co-culture system with OP9 stromal cells and BAFF was used to assess the in vitro differentiation potential of immature progenitors into the different mature B cell subsets. Transcriptional differences between follicular B cells isolated from spleens of K3ΔB- and control mice were assessed by transcriptome array. Results In vitro, we found that integrin activation on B cells was induced upon activation of the chemokine receptors CXCR4 and CXCR5 or the B cell receptor. This stimulation triggered adhesion of wild type B cells to integrin ligands under shear flow. The increase of VLA-4 integrin affinity to its ligand substrates during this process could also be calculated from real-time flow cytometrical analyses. In contrast, K3ΔB-derived B cells could not reach high affinity states of integrins and thus failed to adhere on the substrates upon stimulation, despite slight upregulation of chemokine receptors CXCR4 and CXCR5. B cell migration towards the respective chemokines also required Kindlin-3, even in an integrin ligand-free setting. In vivo, Kindlin-3 was required for homing of mature B cells to the bone marrow and to lymph nodes. When further characterizing K3ΔB mice by flow cytometry and immunohistochemistry we observed increased early B cell numbers in the bone marrow. Of note, marginal zone (MZ) B cells in the spleen were completely absent (Figure 1 A+B). We consequently assessed the potential of immature B cells to develop into B cells with high expression of CD21, a marker for MZ B cells, upon their co-culture with OP9 stromal cells in the presence of the B cell survival factor BAFF. While 18% of B cells differentiating from wild type bone marrow displayed high expression of CD21, the percentage of CD21 high cells recovered from Kindlin-3 deficient progenitors was significantly lower (~12%, Figure 1C). Pathways involved in these developmental differences were analyzed by a transcriptome array, revealing increased activity of the B cell receptor pathway in the knockout situation accompanied by higher, NFkappaB and Notch signaling. Conclusion/Outlook Whereas our results highlight the importance of Kindlin-3 dependent, integrin mediated cell retention and migration during B cell development they also indicate that Kindlin-3 functions in an integrin-independent manner when regulating cell motility and transcription. The complete lack of MZ B cells in the absence of Kindlin-3 is thus most likely a combination of defective retention in the MZ area and transcriptional alterations favoring the development of transitional B cells into follicular- rather than MZ B cells. Figure 1 : B-cell specific Kindlin-3 knockout leads to loss of splenic marginal zone B cells. The percentage of MZ B-cells among total splenic B cells was determined by flow cytometry in K3ΔB mice and wild type (wt) littermates (A). Immunohistochemistry staining of CD19 showed a loss of loosely packed marginal zone B cells (yellow arrows) in the absence of Kindlin-3 (B). B cells were enriched from the bone marrow of K3ΔB mice and wt littermates and cultured on a confluent layer of OP9 cells in the presence of 200 ng/ml BAFF for 72 h. Development of CD21 high/CD23 low B cells was then determined by flow cytometry (C). Figure Disclosures Greil: Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; Astra zeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; Daiichi Sankyo, Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; F. Hoffmann-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; BMS/celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; MSD Merck: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, accomodations, expenses, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1341-1341
Author(s):  
Zhaoyang Li ◽  
Liquan Xue ◽  
Dong-Mi Shin ◽  
Chen-Feng Qi ◽  
Quangeng Zhang ◽  
...  

Abstract The BCL10 gene was isolated from the breakpoint region of the t(1;14)(p22;q32) chromosomal translocation, a recurrent chromosomal abnormality in mucosa-associated lymphoid tissue (MALT)-type lymphomas. The translocation results in constitutive over-expression and nuclear location of the BCL10 protein. To understand the physiological and pathogenic roles played by BCL10 in B-cell biology, a transgenic (TG) mouse model was developed with a human BCL10 gene driven by Em. The TG was expressed in thymic but not peripheral T cells and in the spleen; lymph nodes were negative. Although the lymphoid compartments of the TG mice were grossly normal, histologic studies showed the splenic marginal zone (MZ) to be significantly expanded and, in older mice, to compress the white pulp. In addition, about 10% of animals developed B-cell neoplasms by 18 months of age. By FACS analyses, the number of MZ B cells was increased nearly 2-fold, and both MZ and follicular (FOL) B cells exhibited a marked down-regulation of CD23 expression. In the peritoneum of TG mice, the B1a B-cell population was markedly reduced while the B1b subset was increased over 2-fold. Studies of purified MZ and FOL B cells from normal and TG mice showed that MZ B cells from TG mice had a survival advantage in culture. Studies of the canonical NF-κB signaling pathway that lies downstream from BCL10 showed that it was constitutively activated with high levels of nuclear p50 and p65 protein identified by Western blotting. Quantitative real-time RT-PCR analyses of purified splenic B cells from normal and TG mice for expression of 384 genes identified 44 with significant differences in expression. Almost half of these genes were known NF-κB targets and included genes known to influence B-cell survival (BAFF, IL-10) or associated with MZ lymphomas (S100A9). These results indicate that constitutive expression of BCL10 in B cells is not sufficient to induce transformation alone and that as-yet-unknown secondary mutations are required. Nonetheless, expression of BCL10 clearly resulted in constitutive activation of the canonical NF-κB signaling pathway and a prominent expansion of the MZ B-cell population, thereby setting the stage for later development of lymphomas.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3902-3902
Author(s):  
Hongsheng Wang ◽  
Dong Mi Shin ◽  
Chenfeng Qi ◽  
Herbert Morse

Abstract Abstract 3902 CXCR7 is a newly discovered receptor for the chemokines I-TAC/CXCL11 and SDF-1/CXCL12. Overexpression of CXCR7 in certain tumors has been associated with increased activities of adhesion, invasion and survival. CXCR7 has thus been investigated as a potential chemotherapeutic target in the treatment of metastatic cancers. Our analyses of murine B cell lymphomas revealed that marginal zone B (MZB) cell lymphomas expressed higher levels of CXCR7 than other types of lymphomas. This prompted us to investigate the expression and function of CXCR7 in normal B cells. In this report, we demonstrate that normal MZB cells expressed the highest level of CXCR7 among all B cell subsets. This pattern of expression was consistent with gene profiling studies using cDNA microarrays. Injection of mice with CCX754 or CCX771, a specific blocker of CXCR7, resulted in a significant reduction of MZB cells in the spleen. Immunohistological analyses revealed disrupted integrity and reduced size of the MZ in spleens of CCX754-treated mice. In addition, CCX754 significantly blocked internalization of CXCR7 resulting in an increase of CXCR7 expression on MZB cells but not follicular B cells. This indicates that CXCR7 constantly removes its ligands from the extracellular environment. Taking together, our data suggest that CXCR7 controls CXCL12 availability influencing MZB cell retention in the spleen. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document