scholarly journals α2δ-2 is Required for Functional Postsynaptic Calcium Channel Nanodomain Signaling

2021 ◽  
Author(s):  
Kathleen Beeson ◽  
Gary Westbrook ◽  
Eric Schnell

α2δ proteins (CACNA2D1-4) are required for normal neurological function, although the mechanisms whereby α2δ proteins control neuronal output remain unclear. Using whole-cell recordings of mouse cerebellar Purkinje cells, we show that α2δ-2 is required for coupling postsynaptic voltage-dependent calcium entry to effector mechanisms controlling depolarization-induced suppression of excitation as well as action potential afterhyperpolarization. Our findings indicate that α2δ-2 is necessary for the function of postsynaptic calcium signaling nanodomains.

2001 ◽  
Vol 85 (4) ◽  
pp. 1412-1423 ◽  
Author(s):  
Ansalan E. Stewart ◽  
Robert C. Foehring

Neocortical pyramidal neurons express several different calcium channel types. Previous studies with square voltage steps have found modest biophysical differences between these calcium channel types as well as differences in their modulation by transmitters. We used acutely dissociated neocortical pyramidal neurons to test whether this diversity extends to different activation by physiological stimuli. We conclude that 1) peak amplitude, latency to peak, and the total charge entry for the Ca2+ channel current is dependent on the shape of the mock action potential waveforms (APWs). 2) The percent contribution of the five high-voltage-activated currents to the whole cell current was not altered by using an APW as opposed to a voltage step to elicit the current. 3) The identity of the charge carrier affects the amplitude and decay of the whole cell current. With Ca2+, there was a greater contribution of T-type current to the whole cell current. 4) Total Ba2+ charge entry is linearly dependent on the number of spikes in the stimulating waveform and relatively insensitive to spike frequency. 5) Current decay was greatest with Ca2+ as the charge carrier and with minimal internal chelation. 6) Voltage-dependent neurotransmitter-mediated modulations can be reversed by multiple spikes. The extent of the reversal is dependent on the number of spikes in the stimulating waveform. Thus the neuronal activity pattern can determine the effectiveness of voltage-dependent and -independent modulatory pathways in neocortical pyramidal neurons.


2001 ◽  
Vol 86 (6) ◽  
pp. 2998-3010 ◽  
Author(s):  
Nace L. Golding ◽  
William L. Kath ◽  
Nelson Spruston

In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 μm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 μm from the soma, action potentials in most cells backpropagated either strongly (26–42% attenuation; n = 9/20) or weakly (71–87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300–410 μm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.


2005 ◽  
Vol 89 (6) ◽  
pp. 3790-3806 ◽  
Author(s):  
Nicholas Hernjak ◽  
Boris M. Slepchenko ◽  
Kathleen Fernald ◽  
Charles C. Fink ◽  
Dale Fortin ◽  
...  

1992 ◽  
Vol 67 (5) ◽  
pp. 1346-1358 ◽  
Author(s):  
K. J. Staley ◽  
T. S. Otis ◽  
I. Mody

1. Whole-cell and sharp electrode recordings from adult rat dentate gyrus GCs were performed in the 400-microns-thick hippocampal slice preparation maintained at 34 +/- 1 degrees C. Intrinsic membrane properties of granule cells (GCs) were evaluated with the use of a switching current-clamp amplifier. 2. With the whole-cell technique, the average resting membrane potential (RMP) of GCs was -85 mV when a potassium gluconate electrode solution was used versus -74 mV measured with potassium acetate-filled sharp microelectrodes. The membrane voltage response to injected current was linear over two membrane potential ranges, greater than 10 mV hyperpolarized from RMP and between 10 mV more negative than RMP and -62 mV. The average input resistances (RN) calculated over these ranges were 107 and 228 M omega in the whole-cell recordings versus 37 and 54 M omega in the sharp electrode recordings. There was no correlation between RMP and RN with either recording technique. The membrane time constant (tau m) determined at the RMP was 26.9 ms for whole-cell recordings and 13.9 ms for sharp electrode recordings. 3. There was no evidence of time-dependent changes in RMP, RN, and tau m in whole-cell recordings, although the slow inward rectification seen at hyperpolarized potentials decreased over 30-60 min. Addition of calcium buffers to the whole-cell recording solution did not result in a significant change in the average RMP, the average RN, or the average tau m. 4. Action potential threshold was comparable in whole-cell (-49 mV) and sharp electrode (-52 mV) recordings, but action potential amplitude was larger in whole-cell (126 mV) than in sharp electrode (106 mV) recordings. Spike frequency adaptation was present in the whole-cell recordings and could be abolished by addition of calcium buffers to the electrode solution. 5. We estimated rho, the ratio of dendritic to somatic conductance, to be 5.1 for the whole-cell records and 2.1 for sharp electrode recordings. The electrotonic length of the equivalent cylinder representing the cell processes was estimated to be 0.49 from the whole-cell data and 0.79 from the sharp electrode recordings. This implies that at rest there is only a 10% decrement in steady-state membrane voltage along the length of the dendrite due to shunting across the membrane resistance; small synaptic events occurring in the distal dendritic tree will therefore have a more substantial influence on the soma than previous analyses suggested.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 73 (4) ◽  
pp. 1443-1451 ◽  
Author(s):  
N. M. Lorenzon ◽  
R. C. Foehring

1. Whole cell recordings were obtained from pyramidal neurons acutely dissociated from the sensorimotor cortex of adult (from Lorenzon and Foehring, companion paper) and immature rats postnatal day 1 (P1) to adult. 2. Whole cell calcium channel currents were similar in appearance at all ages. Current amplitudes and estimated densities were initially low (approximately 16 pA/pF at ages < P6) and increased gradually, attaining adult values at approximately 4-5 wk postnatally (approximately 100 pA/pF). 3. L-type current was operationally defined as that blocked by 5 microM nifedipine, N-type current as that blocked by 1 microM omega-conotoxin GVIA, and P-type current as that blocked by 100 nM omega-agatoxin IVA. A resistant current remained in the presence of the combination of these three blockers. The proportions of these four current types did not change during ontogeny. 4. Few biophysical differences were found between the pharmacologically defined current components in adult or 1-wk-old cells. At both ages the resistant current had a more rapid time-to-peak and inactivated more completely and rapidly than the other three types. Resistant currents also activated at more negative potentials. N-, L-, and P-type currents activated at more positive potentials in 1-wk-old cells than in adult cells. For the resistant current, the voltage dependence of activation was not significantly different between the two ages.


2000 ◽  
Vol 84 (4) ◽  
pp. 2016-2025 ◽  
Author(s):  
Fumihito Saitow ◽  
Shin'Ichiro Satake ◽  
Junko Yamada ◽  
Shiro Konishi

Norepinephrine (NE) has been shown to elicit long-term facilitation of GABAergic transmission to rat cerebellar Purkinje cells (PCs) through β-adrenergic receptor activation. To further examine the locus and adrenoceptor subtypes involved in the NE-induced facilitation of GABAergic transmission, we recorded inhibitory postsynaptic currents (IPSCs) evoked by focal stimulation with paired-pulse (PP) stimuli from PCs in rat cerebellar slices by whole cell recordings and analyzed the PP ratio of the IPSC amplitude. NE increased the IPSC amplitude with a decease in the variance of the PP ratio, which was mimicked by presynaptic manipulation of the transmission caused by increasing the extracellular Ca2+ concentration, confirming that the presynaptic adrenergic receptors are responsible for the facilitation. Pharmacological tests showed that the β2-adrenoceptor antagonist, ICI118,551, but not the β1-adrenoceptor antagonist, CGP20712A, blocked the NE-induced IPSC facilitation, suggesting that the β2-adrenoceptors on cerebellar interneurons, basket cells (BCs), mediate the noradrenergic facilitation of GABAergic transmission. Double recordings were performed from BCs and PCs to further characterize the regulation of the GABAergic synapses. First, on-cell recordings from BCs showed that the β-agonist isoproterenol (ISP) increased the frequencies of the spontaneous spikes in BCs and the spike-triggered IPSCs in PCs recorded with the whole cell mode. The amplitude of the spike-triggered IPSCs decreased or increased depending on the individual GABAergic synapses examined. Forskolin invariably increased both the amplitude and the frequency of the spike-triggered IPSCs. Double whole cell recordings from BC-PC pairs showed that ISP mainly caused an increase in the amplitude of the IPSCs evoked in the PCs by an action current in the BCs produced in response to voltage steps from −60 to −10 mV. Our data suggest that the noradrenergic facilitation of GABAergic transmission in the rat cerebellar cortex is mediated, at least in part, by depolarization and action potential discharges in the BCs through activation of the β2-adrenoceptors in BCs coupled to intracellular cyclic AMP formation.


2019 ◽  
Vol 21 (1) ◽  
pp. 216 ◽  
Author(s):  
Francesca Prestori ◽  
Francesco Moccia ◽  
Egidio D’Angelo

Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.


Sign in / Sign up

Export Citation Format

Share Document