scholarly journals Constrained evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through sequence duplication

2021 ◽  
Author(s):  
Jordan C Raisman ◽  
Michael A Fiore ◽  
Lucille Tomin ◽  
Joseph KO Adjei ◽  
Virginia Aswad ◽  
...  

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives; however, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≤ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n=7/16), we find mutations encoding resistance converge on the gene encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through duplication events. Importantly, one of the laboratory evolved mutations in rpmH is identical, and two nearly identical, to those recently reported to confer high-level resistance to azithromycin in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Finally, we assessed the potential of horizontal transfer of derived resistance mutations into multiple strains of N. gonorrhoeae. Though we were unable to transform N. gonorrhoeae in this case, studies like this will be critical for predicting commensal alleles that are at risk of rapid dissemination into pathogen populations.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262370
Author(s):  
Jordan C. Raisman ◽  
Michael A. Fiore ◽  
Lucille Tomin ◽  
Joseph K. O. Adjei ◽  
Virginia X. Aswad ◽  
...  

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


2009 ◽  
Vol 54 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Hassan Safi ◽  
Robert D. Fleischmann ◽  
Scott N. Peterson ◽  
Marcus B. Jones ◽  
Behnam Jarrahi ◽  
...  

ABSTRACT Mutations within codon 306 of the Mycobacterium tuberculosis embB gene modestly increase ethambutol (EMB) MICs. To identify other causes of EMB resistance and to identify causes of high-level resistance, we generated EMB-resistant M. tuberculosis isolates in vitro and performed allelic exchange studies of embB codon 406 (embB406) and embB497 mutations. In vitro selection produced mutations already identified clinically in embB306, embB397, embB497, embB1024, and embC13, which result in EMB MICs of 8 or 14 μg/ml, 5 μg/ml, 12 μg/ml, 3 μg/ml, and 4 μg/ml, respectively, and mutations at embB320, embB324, and embB445, which have not been identified in clinical M. tuberculosis isolates and which result in EMB MICs of 8 μg/ml, 8 μg/ml, and 2 to 8 μg/ml, respectively. To definitively identify the effect of the common clinical embB497 and embB406 mutations on EMB susceptibility, we created a series of isogenic mutants, exchanging the wild-type embB497 CAG codon in EMB-susceptible M. tuberculosis strain 210 for the embB497 CGG codon and the wild-type embB406 GGC codon for either the embB406 GCC, embB406 TGC, embB406 TCC, or embB406 GAC codon. These new mutants showed 6-fold and 3- to 3.5-fold increases in the EMB MICs, respectively. In contrast to the embB306 mutants, the isogenic embB497 and embB406 mutants did not have preferential growth in the presence of isoniazid or rifampin (rifampicin) at their MICs. These results demonstrate that individual embCAB mutations confer low to moderate increases in EMB MICs. Discrepancies between the EMB MICs of laboratory mutants and clinical M. tuberculosis strains with identical mutations suggest that clinical EMB resistance is multigenic and that high-level EMB resistance requires mutations in currently unknown loci.


2010 ◽  
Vol 49 (1) ◽  
pp. 201-208 ◽  
Author(s):  
D. J. H. F. Knapp ◽  
P. R. Harrigan ◽  
A. F. Y. Poon ◽  
Z. L. Brumme ◽  
M. Brockman ◽  
...  

1998 ◽  
Vol 42 (7) ◽  
pp. 1853-1857 ◽  
Author(s):  
D. L. Williams ◽  
L. Spring ◽  
L. Collins ◽  
L. P. Miller ◽  
L. B. Heifets ◽  
...  

ABSTRACT The contributions of 23 insertion, deletion, or missense mutations within an 81-bp fragment of rpoB, the gene encoding the β-subunit of the DNA-dependent RNA polymerase of Mycobacterium tuberculosis, to the development of resistance to rifamycins (rifampin, rifabutin, rifapentine, and KRM-1648) in 29 rifampin-resistant clinical isolates were defined. Specific mutantrpoB alleles led to the development of cross-resistance to all rifamycins tested, while a subset of mutations were associated with resistance to rifampin and rifapentine but not to KRM-1648 or rifabutin. To further study the impact of specific rpoBmutant alleles on the development of rifamycin resistance, mutations were incorporated into the rpoB gene of M. tuberculosis H37Rv, contained on a mycobacterial shuttle plasmid, by in vitro mutagenesis. Recombinant M. tuberculosis clones containing plasmids with specific mutations in either codon 531 or 526 of rpoB exhibited high-level resistance to all rifamycins tested, whereas clones containing a plasmid with a mutation in codon 516 exhibited high-level resistance to rifampin and rifapentine but were susceptible to both rifabutin and KRM-1648. These results provided additional proof of the association of specificrpoB mutations with the development of rifamycin resistance and corroborate previous reports of the usefulness of rpoB genotyping for predicting rifamycin-resistant phenotypes.


2008 ◽  
Vol 52 (4) ◽  
pp. 1297-1301 ◽  
Author(s):  
Marina N. Stepanova ◽  
Maxim Pimkin ◽  
Anatoly A. Nikulin ◽  
Varvara K. Kozyreva ◽  
Elena D. Agapova ◽  
...  

ABSTRACT We report on a novel CTX-M extended-spectrum β-lactamase (ESBL), designated CTX-M-42, with enhanced activity toward ceftazidime. CTX-M-42 was identified in a hypermutable Escherichia coli nosocomial isolate (isolate Irk2320) and is a Pro167Thr amino acid substitution variant of CTX-M-3. By molecular typing of ESBL-producing E. coli strains previously isolated in the same hospital ward, we were able to identify a putative progenitor (strain Irk1224) of Irk2320, which had a mutator phenotype and harbored the CTX-M-3 β-lactamase. To reproduce the natural evolution of CTX-M-3, we selected for ceftazidime resistance mutations in bla CTX-M-3 gene in vitro both in clinical isolate Irk1224 and in laboratory-derived hypermutable (mutD5) strain GM2995. These experiments yielded CTX-M-3Pro167Ser and CTX-M-3Asn136Lys mutants which conferred higher levels of resistance to ceftazidime than to cefotaxime. CTX-M-3Asn136Lys had a level of low activity toward ampicillin, which may explain its absence from clinical isolates. We conclude that the selection of CTX-M-42 could have occurred in vivo following treatment with ceftazidime and was likely facilitated by the hypermutable background.


2013 ◽  
Vol 57 (7) ◽  
pp. 3375-3379 ◽  
Author(s):  
Sunwen Chou ◽  
Ronald J. Ercolani ◽  
Gail Marousek ◽  
Terry L. Bowlin

ABSTRACTHuman cytomegalovirus UL97 kinase mutations that commonly confer ganciclovir resistance cluster in different parts of the gene than those conferring resistance to maribavir, an experimental UL97 kinase inhibitor. The drug resistance, growth, and autophosphorylation phenotypes of several unusual UL97 mutations in the kinase catalytic domain were characterized. Mutations V466G and P521L, described in clinical specimens from ganciclovir-treated subjects, conferred a UL97 kinase knockout phenotype with no autophosphorylation, a severe growth defect, and high-level ganciclovir, cyclopropavir, and maribavir resistance, similar to mutations at the catalytic lysine residue K355. Mutations F342S and V356G, observed after propagation under cyclopropavirin vitro, showed much less growth attenuation and moderate- to high-level resistance to all three drugs while maintaining UL97 autophosphorylation competence and normal cytopathic effect in cell culture, a novel phenotype. F342S is located in the ATP-binding P-loop and is homologous to a c-Abl kinase mutation conferring resistance to imatinib. UL97 mutants with relatively preserved growth fitness and multidrug resistance are of greater concern in antiviral therapy than the severely growth-impaired UL97 knockout mutants. Current diagnostic genotyping assays are unlikely to detect F342S and V356G, and the frequency of their appearance in clinical specimens remains undefined.


2003 ◽  
Vol 47 (7) ◽  
pp. 2362-2365 ◽  
Author(s):  
Lance B. Price ◽  
Amy Vogler ◽  
Talima Pearson ◽  
Joseph D. Busch ◽  
James M. Schupp ◽  
...  

ABSTRACT Mutants of attenuated Bacillus anthracis with high-level ciprofloxacin resistance were isolated using a three-step in vitro selection. Ciprofloxacin MICs were 0.5 μg/ml for first-step mutants, which had one of two gyrA quinolone resistance-determining region (QRDR) mutations. Ciprofloxacin MICs were 8 and 16 μg/ml for second-step mutants, which had one of three parC QRDR mutations. Ciprofloxacin MICs for third-step mutants were 32 and 64 μg/ml. Mutants for which MICs were 64 μg/ml had one of two additional mutations within the gyrA QRDR or one of two mutations within the gyrB QRDR. Mutants for which MICs were 32 μg/ml had no additional target modifications but showed evidence of enhanced ciprofloxacin efflux.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jinxin Liu ◽  
Jianfeng Pei ◽  
Luhua Lai

AbstractDrug resistance is of increasing concern, especially during the treatments of infectious diseases and cancer. To accelerate the drug discovery process in combating issues of drug resistance, here we developed a computational and experimental strategy to predict drug resistance mutations. Using BCR-ABL as a case study, we successfully recaptured the clinically observed mutations that confer resistance imatinib, nilotinib, dasatinib, bosutinib, and ponatinib. We then experimentally tested the predicted mutants in vitro. We found that although all mutants showed weakened binding strength as expected, the binding constants alone were not a good indicator of drug resistance. Instead, the half-maximal inhibitory concentration (IC50) was shown to be a good indicator of the incidence of the predicted mutations, together with change in catalytic efficacy. Our suggested strategy for predicting drug-resistance mutations includes the computational prediction and in vitro selection of mutants with increased IC50 values beyond the drug safety window.


Sign in / Sign up

Export Citation Format

Share Document