scholarly journals iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation

2021 ◽  
Author(s):  
Danielle Marie Garshott ◽  
Heeseon An ◽  
Elayanambi Sundaramoorthy ◽  
Marilyn Leonard ◽  
Alison Vicary ◽  
...  

Since multiple ribosomes can engage a single mRNA, nonuniform ribosome progression can result in collisions. Ribosome collisions during translation elongation elicit a multifaceted ribosome-associated quality control (RQC) response. Despite advanced mechanistic understanding of translation initiation, a parallel RQC pathway that acts on collided preinitiation complexes has not been described. Here, we show that blocking progression of scanning or elongating ribosomes past the start codon triggers uS3 and uS5 ribosomal ubiquitylation. We demonstrate that conditions that activate the integrated stress response can also induce preinitiation complex collisions. The ubiquitin ligase, RNF10, and the deubiquitylating enzyme, USP10, are the key regulators of uS3 and uS5 ubiquitylation. Prolonged uS3 and uS5 ubiquitylation results in 40S, but not 60S, ribosomal protein degradation in an autophagy-independent manner. This study identifies a distinct arm in the RQC pathway, initiation RQC (iRQC), that acts on pervasive ribosome collisions during translation initiation to modulate translation activity and capacity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Victor Barrenechea ◽  
Maryhory Vargas-Reyes ◽  
Miguel Quiliano ◽  
Pohl Milón

Tetracycline has positively impacted human health as well as the farming and animal industries. Its extensive usage and versatility led to the spread of resistance mechanisms followed by the development of new variants of the antibiotic. Tetracyclines inhibit bacterial growth by impeding the binding of elongator tRNAs to the ribosome. However, a small number of reports indicated that Tetracyclines could also inhibit translation initiation, yet the molecular mechanism remained unknown. Here, we use biochemical and computational methods to study how Oxytetracycline (Otc), Demeclocycline (Dem), and Tigecycline (Tig) affect the translation initiation phase of protein synthesis. Our results show that all three Tetracyclines induce Initiation Factor IF3 to adopt a compact conformation on the 30S ribosomal subunit, similar to that induced by Initiation Factor IF1. This compaction was faster for Tig than Dem or Otc. Furthermore, all three tested tetracyclines affected IF1-bound 30S complexes. The dissociation rate constant of IF1 in early 30S complexes was 14-fold slower for Tig than Dem or Otc. Late 30S initiation complexes (30S pre-IC or IC) exhibited greater IF1 stabilization by Tig than for Dem and Otc. Tig and Otc delayed 50S joining to 30S initiation complexes (30S ICs). Remarkably, the presence of Tig considerably slowed the progression to translation elongation and retained IF1 in the resulting 70S initiation complex (70S IC). Molecular modeling of Tetracyclines bound to the 30S pre-IC and 30S IC indicated that the antibiotics binding site topography fluctuates along the initiation pathway. Mainly, 30S complexes show potential contacts between Dem or Tig with IF1, providing a structural rationale for the enhanced affinity of the antibiotics in the presence of the factor. Altogether, our data indicate that Tetracyclines inhibit translation initiation by allosterically perturbing the IF3 layout on the 30S, retaining IF1 during 70S IC formation, and slowing the transition toward translation elongation. Thus, this study describes a new complementary mechanism by which Tetracyclines may inhibit bacterial protein synthesis.


2020 ◽  
Vol 48 (17) ◽  
pp. 9478-9490
Author(s):  
Juraj Szavits-Nossan ◽  
Luca Ciandrini

Abstract One of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome’s stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima and traffic is minimized at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach $50\%$. Our work provides new measures of translation initiation and elongation efficiencies, emphasizing the importance of rating these two stages of translation separately.


2019 ◽  
Vol 11 (10) ◽  
pp. 816-828 ◽  
Author(s):  
Lichao Liu ◽  
J Yuyang Lu ◽  
Fajin Li ◽  
Xudong Xing ◽  
Tong Li ◽  
...  

Abstract The metabolic enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Its mutation often leads to aberrant gene expression in cancer. IDH1 was reported to bind thousands of RNA transcripts in a sequence-dependent manner; yet, the functional significance of this RNA-binding activity remains elusive. Here, we report that IDH1 promotes mRNA translation via direct associations with polysome mRNA and translation machinery. Comprehensive proteomic analysis in embryonic stem cells (ESCs) revealed striking enrichment of ribosomal proteins and translation regulators in IDH1-bound protein interactomes. We performed ribosomal profiling and analyzed mRNA transcripts that are associated with actively translating polysomes. Interestingly, knockout of IDH1 in ESCs led to significant downregulation of polysome-bound mRNA in IDH1 targets and subtle upregulation of ribosome densities at the start codon, indicating inefficient translation initiation upon loss of IDH1. Tethering IDH1 to a luciferase mRNA via the MS2-MBP system promotes luciferase translation, independently of the catalytic activity of IDH1. Intriguingly, IDH1 fails to enhance luciferase translation driven by an internal ribosome entry site. Together, these results reveal an unforeseen role of IDH1 in fine-tuning cap-dependent translation via the initiation step.


2003 ◽  
Vol 84 (12) ◽  
pp. 3263-3274 ◽  
Author(s):  
Idoia Burgui ◽  
Tomás Aragón ◽  
Juan Ortín ◽  
Amelia Nieto

It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5′UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1–eIF4GI and PABP1–eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.


2018 ◽  
Author(s):  
Andrea Riba ◽  
Noemi Di Nanni ◽  
Nitish Mittal ◽  
Erik Arhné ◽  
Alexander Schmidt ◽  
...  

AbstractAlthough protein synthesis dynamics has been studied both with theoretical models and by profiling ribosome footprints, the determinants of ribosome flux along open reading frames (ORFs) are not fully understood. Combining measurements of protein synthesis rate with ribosome footprinting data, we here inferred translation initiation and elongation rates for over a thousand ORFs in exponentially-growing wildtype yeast cells. We found that the amino acid composition of synthesized proteins is as important a determinant of translation elongation rate as parameters related to codon and tRNA adaptation. We did not find evidence of ribosome collisions curbing the protein output of yeast transcripts, either in high translation conditions associated with exponential growth, or in strains in which deletion of individual ribosomal protein genes leads to globally increased or decreased translation. Slow translation elongation is characteristic of RP-encoding transcripts, which have markedly lower protein output than other transcripts with equally high ribosome densities.Significance StatementAlthough sequencing of ribosome footprints has uncovered new aspects of mRNA translation, the determinants of ribosome flux remain incompletely understood. Combining ribosome footprint data with measurements of protein synthesis rates, we here inferred translation initiation and elongation rates for over a thousand ORFs in yeast strains with varying translation capacity. We found that the translation elongation rate varies up to ~20-fold among yeast transcripts, and is significantly correlated with the rate of translation initiation. Furthermore, the amino acid composition of synthesized proteins impacts the rate of translation elongation to the same extent as measures of codon and tRNA adaptation. Transcripts encoding ribosomal proteins are translated especially slow, having markedly lower protein output than other transcripts with equally high ribosome densities.


2021 ◽  
Author(s):  
Alison J Inglis ◽  
Alina Guna ◽  
Angel Galvez Merchan ◽  
Akshaye Pal ◽  
Theodore K Esantsi ◽  
...  

Translation of mRNAs containing premature termination codons (PTCs) can result in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance path-way responsible for detecting and degrading PTC containing transcripts. While the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational, and dependent on an intact ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors, and suggested a lack of dependence on the canonical ribosome-quality control (RQC) pathway. Finally, one of the strongest hits in our screens was the E3 ubiquitin ligase CNOT4, a member of the CCR4-NOT complex, which is involved in initiating mRNA degradation. We show that CNOT4 is involved in NMD coupled protein degradation, and its role depends on a functional RING ubiquitin ligase domain. Our results demonstrate the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a framework for identifying and characterizing factors involved in this process.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammed-Husain M Bharmal ◽  
Alisa Gega ◽  
Jared M Schrader

Abstract Bacterial translation is thought to initiate by base pairing of the 16S rRNA and the Shine–Dalgarno sequence in the mRNA’s 5′ untranslated region (UTR). However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5′ UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine–Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic in vivo translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation. Using these data, a simple computational model was built based on the combinatorial relationship of these mRNA features that can accurately classify leaderless mRNAs and predict the translation initiation efficiency of leaderless mRNAs. Thus, start codon accessibility, leader length, and start codon identity combine to define leaderless mRNA translation initiation in bacteria.


Science ◽  
2015 ◽  
Vol 349 (6243) ◽  
pp. 91-95 ◽  
Author(s):  
Hsiu-Chuan Lin ◽  
Szu-Chi Ho ◽  
Yi-Yun Chen ◽  
Kay-Hooi Khoo ◽  
Pang-Hung Hsu ◽  
...  

Selenocysteine (Sec) is translated from the codon UGA, typically a termination signal. Codon duality extends the genetic code; however, the coexistence of two competing UGA-decoding mechanisms immediately compromises proteome fidelity. Selenium availability tunes the reassignment of UGA to Sec. We report a CRL2 ubiquitin ligase–mediated protein quality-control system that specifically eliminates truncated proteins that result from reassignment failures. Exposing the peptide immediately N-terminal to Sec, a CRL2 recognition degron, promotes protein degradation. Sec incorporation destroys the degron, protecting read-through proteins from detection by CRL2. Our findings reveal a coupling between directed translation termination and proteolysis-assisted protein quality control, as well as a cellular strategy to cope with fluctuations in organismal selenium intake.


2019 ◽  
Vol 20 (18) ◽  
pp. 4464 ◽  
Author(s):  
Nikolay E. Shirokikh ◽  
Yulia S. Dutikova ◽  
Maria A. Staroverova ◽  
Ross D. Hannan ◽  
Thomas Preiss

Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential ‘scanning’ of the 5′ untranslated regions (UTRs). Scanning through the 5′UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5′UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured β-globin sequences in the 5′UTR but not that of an mRNA with a poly(A) sequence as the 5′UTR. By contrast, the nonhydrolysable ATP analogue β,γ-imidoadenosine 5′-triphosphate (AMP-PNP) inhibited translation irrespective of the 5′UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA (‘toeprinting’), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This ‘−8 nt toeprint’ was seen with mRNA 5′UTRs of different length, sequence and structure potential. Importantly, the ‘−8 nt toeprint’ was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5′UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5′UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasuko Matsuki ◽  
Yoshitaka Matsuo ◽  
Yu Nakano ◽  
Shintaro Iwasaki ◽  
Hideyuki Yoko ◽  
...  

AbstracteIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.


Sign in / Sign up

Export Citation Format

Share Document