scholarly journals Differentiation of speech-induced artifacts from physiological high gamma activity in intracranial recordings

2021 ◽  
Author(s):  
Alan Bush ◽  
Anna Chrabaszcz ◽  
Victoria Peterson ◽  
Varun Saravanan ◽  
Christina Dastolfo-Hromack ◽  
...  

AbstractThere is great interest in identifying the neurophysiological underpinnings of speech production. Deep brain stimulation (DBS) surgery is unique in that it allows intracranial recordings from both cortical and subcortical regions in patients who are awake and speaking. The quality of these recordings, however, may be affected to various degrees by mechanical forces resulting from speech itself. Here we describe the presence of speech-induced artifacts in local-field potential (LFP) recordings obtained from mapping electrodes, DBS leads, and cortical electrodes. In addition to expected physiological increases in high gamma (60-200 Hz) activity during speech production, time-frequency analysis in many channels revealed a narrowband gamma component that exhibited a pattern similar to that observed in the speech audio spectrogram. This component was present to different degrees in multiple types of neural recordings. We show that this component tracks the fundamental frequency of the participant’s voice, correlates with the power spectrum of speech and has coherence with the produced speech audio. A vibration sensor attached to the stereotactic frame recorded speech-induced vibrations with the same pattern observed in the LFPs. No corresponding component was identified in any neural channel during the listening epoch of a syllable repetition task. These observations demonstrate how speech-induced vibrations can create artifacts in the primary frequency band of interest. Identifying and accounting for these artifacts is crucial for establishing the validity and reproducibility of speech-related data obtained from intracranial recordings during DBS surgery.

2018 ◽  
Author(s):  
A Chrabaszcz ◽  
WJ Neumann ◽  
O Stretcu ◽  
WJ Lipski ◽  
A Bush ◽  
...  

ABSTRACTThe sensorimotor cortex is somatotopically organized to represent the vocal tract articulators, such as lips, tongue, larynx, and jaw. How speech and articulatory features are encoded at the subcortical level, however, remains largely unknown. We analyzed local field potential (LFP) recordings from the subthalamic nucleus (STN) and simultaneous electrocorticography recordings from the sensorimotor cortex of 11 patients (1 female) with Parkinson’s disease during implantation of deep brain stimulation (DBS) electrodes, while patients read aloud three-phoneme words. The initial phonemes involved either articulation primarily with the tongue (coronal consonants) or the lips (labial consonants). We observed significant increases in high gamma (60–150 Hz) power in both the STN and the sensorimotor cortex that began before speech onset and persisted for the duration of speech articulation. As expected from previous reports, in the sensorimotor cortex, the primary articulator involved in the production of the initial consonant was topographically represented by high gamma activity. We found that STN high gamma activity also demonstrated specificity for the primary articulator, although no clear topography was observed. In general, subthalamic high gamma activity varied along the ventral-dorsal trajectory of the electrodes, with greater high gamma power recorded in the more dorsal locations of the STN. These results demonstrate that articulator-specific speech information is contained within high gamma activity of the STN, with similar temporal but less specific topographical organization, compared to similar information encoded in the sensorimotor cortex.SIGNIFICANCE STATEMENTClinical and electrophysiological evidence suggests that the subthalamic nucleus is involved in speech, however, this important basal ganglia node is ignored in current models of speech production. We previously showed that subthalamic nucleus neurons differentially encode early and late aspects of speech production, but no previous studies have examined subthalamic functional organization for speech articulators. Using simultaneous local field potential recordings from the sensorimotor cortex and the subthalamic nucleus in patients with Parkinson’s disease undergoing deep brain stimulation surgery, we discovered that subthalamic nucleus high gamma activity tracks speech production at the level of vocal tract articulators, with high gamma power beginning to increase prior to the onset of vocalization, similar to cortical articulatory encoding.


Neuroreport ◽  
2014 ◽  
Vol 25 (18) ◽  
pp. 1411-1417 ◽  
Author(s):  
Abbas Babajani-Feremi ◽  
Roozbeh Rezaie ◽  
Shalini Narayana ◽  
Asim F. Choudhri ◽  
Stephen P. Fulton ◽  
...  

2014 ◽  
Vol 112 (11) ◽  
pp. 3001-3011 ◽  
Author(s):  
Piotr Suffczynski ◽  
Nathan E. Crone ◽  
Piotr J. Franaszczuk

High-gamma activity, ranging in frequency between ∼60 Hz and 200 Hz, has been observed in local field potential, electrocorticography, EEG and magnetoencephalography signals during cortical activation, in a variety of functional brain systems. The origin of these signals is yet unknown. Using computational modeling, we show that a cortical network model receiving thalamic input generates high-gamma responses comparable to those observed in local field potential recorded in monkey somatosensory cortex during vibrotactile stimulation. These high-gamma oscillations appear to be mediated mostly by an excited population of inhibitory fast-spiking interneurons firing at high-gamma frequencies and pacing excitatory regular-spiking pyramidal cells, which fire at lower rates but in phase with the population rhythm. The physiological correlates of high-gamma activity, in this model of local cortical circuits, appear to be similar to those proposed for hippocampal ripples generated by subsets of interneurons that regulate the discharge of principal cells.


2020 ◽  
Author(s):  
Tony Ye ◽  
Mitchell J. Bartlett ◽  
Scott J. Sherman ◽  
Torsten Falk ◽  
Stephen L. Cowen

AbstractL-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson’s disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub - anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks - long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 hours. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine’s therapeutic effects are region specific. Our findings also have clinical implications as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yingjian Liu ◽  
Gang Wang ◽  
Chao Cao ◽  
Gaorui Zhang ◽  
Emily B. Tanzi ◽  
...  

ObjectiveLow-intensity transcranial ultrasound stimulation (TUS) is a non-invasive neuromodulation technique with high spatial resolution and feasible penetration depth. To date, the mechanisms of TUS modulated neural oscillations are not fully understood. This study designed a very low acoustic intensity (AI) TUS system that produces considerably reduced AI Ultrasound pulses (ISPTA < 0.5 W/cm2) when compared to previous methods used to measure regional neural oscillation patterns under different TUS parameters.MethodsWe recorded the local field potential (LFP) of five brain nuclei under TUS with three groups of simulating parameters. Spectrum estimation, time-frequency analysis (TFA), and relative power analysis methods have been applied to investigate neural oscillation patterns under different stimulation parameters.ResultsUnder PRF, 500 Hz and 1 kHz TUS, high-amplitude LFP activity with the auto-rhythmic pattern appeared in selected nuclei when ISPTA exceeded 12 mW/cm2. With TFA, high-frequency energy (slow gamma and high gamma) was significantly increased during the auto-rhythmic patterns. We observed an initial plateau in nuclei response when ISPTA reached 16.4 mW/cm2 for RPF 500 Hz and 20.8 mW/cm2 for RPF 1 kHz. The number of responding nuclei started decreasing while ISPTA continued increasing. Under 1.5 kHz TUS, no auto-rhythmic patterns have been observed, but slow frequency power was increased during TUS. TUS inhibited most of the frequency band and generated obvious slow waves (theta and delta band) when stimulated at RPF = 1.5 kHz, ISPTA = 8.8 mW/cm2.ConclusionThese results demonstrate that very low intensity Transcranial Ultrasound Stimulation (VLTUS) exerts significant neuromodulator effects under specific parameters in rat models and may be a valid tool to study neuronal physiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Wang ◽  
Chuanliang Han ◽  
Tian Wang ◽  
Weifeng Dai ◽  
Yang Li ◽  
...  

AbstractStimulus-dependence of gamma oscillations (GAMMA, 30–90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites’ preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.


2018 ◽  
Vol 15 (2) ◽  
pp. 026015 ◽  
Author(s):  
Leah Muller ◽  
John D Rolston ◽  
Neal P Fox ◽  
Robert Knowlton ◽  
Vikram R Rao ◽  
...  

2016 ◽  
Vol 127 (1) ◽  
pp. 277-284 ◽  
Author(s):  
Jared D. Olson ◽  
Jeremiah D. Wander ◽  
Lise Johnson ◽  
Devapratim Sarma ◽  
Kurt Weaver ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Nathan W. Schultheiss ◽  
Maximillian Schlecht ◽  
Maanasa Jayachandran ◽  
Deborah R. Brooks ◽  
Jennifer L. McGlothan ◽  
...  

AbstractDelta-frequency network activity is commonly associated with sleep or behavioral disengagement accompanied by a dearth of cortical spiking, but delta in awake behaving animals is not well understood. We show that hippocampal (HC) synchronization in the delta frequency band (1-4 Hz) is related to animals’ locomotor behavior using a detailed analysis of simultaneous head- and body-tracking data. In contrast to running-speed modulation of the theta rhythm (6-10 Hz, a critical mechanism in navigation models), we observed that strong delta synchronization occurred when animals were stationary or moving slowly and while theta and fast gamma (55-120 Hz) were weak. We next combined time-frequency decomposition of the local field potential with hierarchical clustering algorithms to categorize momentary estimations of the power spectral density (PSD) into putative modes of HC activity. Delta and theta power measures from these modes were notably orthogonal, and theta and delta coherences between HC recording sites were monotonically related to theta-delta ratios across modes. Next, we focused on bouts of precisely-defined running and stationary behavior. Extraction of delta and theta power density estimates for each instance of these bout types confirmed the orthogonality between frequency bands seen across modes. We found that delta-band and theta-band coherence within HC, and in a small sample, between HC and medial prefrontal cortex (mPFC), mirrored delta and theta components of the PSD. Delta-band synchronization often developed rapidly when animals paused briefly between runs, as well as appearing throughout longer stationary bouts. Taken together, our findings suggest that delta-dominated network modes (and corresponding mPFC-HC couplings) represent functionally-distinct circuit dynamics that are temporally and behaviorally interspersed amongst theta-dominated modes during navigation. As such these modes of mPFC-HC circuit dynamics could play a fundamental role in coordinating encoding and retrieval mechanisms or decision-making processes at a timescale that segments event sequences within behavioral episodes.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


Sign in / Sign up

Export Citation Format

Share Document