scholarly journals AGL16 regulates genome-wide gene expression and flowering time with partial dependency on SOC1 in Arabidopsis

2021 ◽  
Author(s):  
Xue Dong ◽  
Li-Ping Zhang ◽  
Dongmei Yu ◽  
Fang Cheng ◽  
Yinxin Dong ◽  
...  

Flowering transition is pivotal and tightly regulated by complex gene-regulatory-networks, in which AGL16 plays important roles. But the molecular function and binding property of AGL16 is not fully explored in vivo. With ChIP-seq and comparative transcriptomics approaches, we characterized the AGL16 targets spectrum and tested its close molecular and genetic interactions with SOC1, the key flowering integrator. AGL16 bound to promoters of more than 2000 genes via CArG-box motifs that were highly similar to that of SOC1. Being consistent with this, AGL16 formed protein complex and shared a common set of targets with SOC1. However, only very few genes showed differential expression in the agl16-1 loss-of-function mutant, whereas in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter of the DEGs were also bound by AGL16. AGL16 targeted potentially to about seventy flowering time genes involved in multiple pathways. Corroborating with these, AGL16 repressed the flowering time stronger in soc1-2 than in Col-0 background. These data reveals that AGL16 regulates gene expression and flowering time with a partial dependency on SOC1 activity. Moreover, AGL16 participated in the regulation of water loss and seed dormancy. Our study thus defines the AGL16 molecular spectrum and provides insights underlining the molecular coordination of flowering and environmental adaptation.

2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 405-405 ◽  
Author(s):  
Omar Abdel-Wahab ◽  
Mazhar Adli ◽  
Lindsay Saunders ◽  
Jie Gao ◽  
Alan H. Shih ◽  
...  

Abstract Abstract 405 Somatic mutations in ASXL1 have been identified in patients with myeloid malignancies and are associated with worsened overall survival in AML and MDS patients. However the mechanisms of myeloid transformation of ASXL1 mutations had not been delineated. We therefore performed extensive in vitro and in vivo studies to assess the functional implications of ASXL1 mutations in the hematopoietic compartment. Transcriptional and Western blot analysis demonstrated loss of ASXL1 protein in primary leukemia samples with endogenous ASXL1 mutations indicating that these mutations are loss-of-function disease alleles. Further, ASXL1 depletion by shRNA in normal and malignant hematopoietic cells leads to robust upregulation of a set of genes including the posterior HOXA cluster (HoxA5-HoxA13). Increased HoxA gene expression was confirmed in human hematopoietic stem progenitor cells targeted with ASXL1 siRNA and in mice with conditional deletion of Asxl1 in the hematopoietic compartment. Previous studies in Drosophila had revealed that Asxl forms the polycomb-repressive deubiquitinase (PR-DUB) complex with BAP1, which normally opposes the function of polycomb repressive complex 1 (PRC1) by removing H2AK119 ubiquitination. We verified that wild-type, but not mutant ASXL1 associates with BAP1 in co-immunoprecipitation studies. However, BAP1 depletion in hematopoietic cells did not result in significant changes in HoxA gene expression, suggesting that ASXL1 regulates gene expression in hematopoietic cells independent of its role in the PR-DUB complex. We therefore performed CHIP sequencing for known activating and repressive chromatin marks and histone mass spectrometry to elucidate the genome-wide effects of ASXL1 loss on chromatin state in hematopoietic cells. This allowed us to show that ASXL1 loss resulted in genome-wide loss of the transcriptionally repressive mark H3K27me3 in hematopoietic cells and primary patient samples with ASXL1 mutations. These data were supported by western blot analysis and histone mass spectrometry demonstrating a significant loss of H3K27 trimethylation in ASXL1-mutant cells. Moreover, ASXL1 mutations in primary leukemia samples are characterized by loss of H3K27 trimethylation at the HoxA locus. These data led us to hypothesize that ASXL1 interacts with the PRC2 complex; co-immunoprecipitation studies revealed that ASXL1 associates with members of the PRC2 complex including EZH2 and SUZ12 but not with the PRC1 repressive complex. Importantly, ASXL1 downregulation resulted in loss of EZH2 recruitment to the HOXA locus indicating a role of ASXL1 in recruiting the PRC2 complex to known leukemogenic loci. We next assessed the effects of ASXL1 loss in vivo by generating a conditional knock-out model of ASXL1 and also by employing shRNA to deplete ASXL1 in hematopoietic cells expressing the NRASG12D oncogene. Consonant with the in vitro data, we observed HOXA9 overexpression with ASXL1 loss/depletion in vivo. Preliminary analysis reveals that conditional, hematopoietic specific ASXL1-knockout (ASXL1fl/fl Vav-Cre) mice are characterized by progressive expansion of LSK and myeloid progenitor cells in mice less than 6 months of age. After 6 months of age a significant proportion of ASXL1fl/fl Vav-Cre mice developed leukocytosis, anemia, thrombocytopenia, and splenomegaly; pathologic analysis of tissues revealed a phenotype consistent with myelodysplasia with myeloproliferative features. Moreover, loss of ASXL1 in cooperation with expression of NRasG12D resulted in impaired survival, increased myeloproliferation, and progressive anemia consistent with MPN/MDS in vivo. Taken together, these results reveal that ASXL1 mutations result in a loss-of-function and suggest a specific role for ASXL1 in epigenetic regulation of gene expression by facilitating PRC2-mediated transcriptional repression of known leukemic oncogenes. Moreover, our in vivo data validate the importance of ASXL1 mutations in the pathogenesis of myeloid malignancies and provide insight into how mutations that inhibit PRC2 function contribute to myeloid transformation through epigenetic dysregulation of specific target genes. Disclosures: Carroll: Agios Pharmaceuticals: Research Funding; TetraLogic Pharmaceuticals: Research Funding; Sanofi Aventis Corporation: Research Funding; Glaxo Smith Kline, Inc.: Research Funding.


2021 ◽  
Author(s):  
Yanis Pelinski ◽  
Donia Hidaoui ◽  
Francois Hermetet ◽  
Anne Stolz ◽  
M'boyba Khadija Diop ◽  
...  

Understanding how ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long-term is crucial. We recently showed a link between derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements, and IR-induced HSC injury. L1 contribute to gene regulatory networks. However, the mechanisms involved in IR-induced L1Md derepression, and their impact on HSC transcriptome remain to be addressed. Here we show that IR triggers genome-wide H3K9me3 decreased and transcriptomic changes in HSCs, characterized by a loss of the TNF-α/NF-κB and HSC signatures. HSC gene repression is associated to H3K9me3 loss at specific intronic L1Md displaying NF-κB binding sites. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment before IR rescued all these effects and prevented IR-induced HSC loss of function in vivo. This reveals the importance of the TNF-α/NF-κB pathway to control H3K9me3 levels at selected intronic L1Md and thereby preserve HSC gene expression and function during IR stress.


Reproduction ◽  
2012 ◽  
Vol 143 (3) ◽  
pp. 231-246 ◽  
Author(s):  
Peter L Pfeffer ◽  
David J Pearton

This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.


Sign in / Sign up

Export Citation Format

Share Document