scholarly journals A genetic switch for male UV-iridescence in an incipient species pair of sulphur butterflies

2021 ◽  
Author(s):  
Vincent Ficarrotta ◽  
Joseph J Hanly ◽  
Ling S Loh ◽  
Caroline M Francescutti ◽  
Anna Ren ◽  
...  

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of UV iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern US with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X effect. Within this chromosome-wide reproductive barrier, cis-regulatory variation of bric a brac (bab) drives the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knock-out, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results provide new insights into the diversification of sexual signals and the species concept.

2022 ◽  
Vol 119 (3) ◽  
pp. e2109255118
Author(s):  
Vincent Ficarrotta ◽  
Joseph J. Hanly ◽  
Ling S. Loh ◽  
Caroline M. Francescutti ◽  
Anna Ren ◽  
...  

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. Liancourt ◽  
P. Choler ◽  
N. Gross ◽  
X. Thibert-Plante ◽  
K. Tielbörger

Compared to the vast literature linking competitive interactions and speciation, attempts to understand the role of facilitation for evolutionary diversification remain scarce. Yet, community ecologists now recognize the importance of positive interactions within plant communities. Here, we examine how facilitation may interfere with the mechanisms of ecological speciation. We argue that facilitation is likely to (1) maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and (2) increase fitness of introgressed forms and limit reinforcement in secondary contact zones. Alternatively, we present how facilitation may favour colonization of marginal habitats and thus enhance local adaptation and ecological speciation. Therefore, facilitation may impede or pave the way for ecological speciation. Using a simple spatially and genetically explicit modelling framework, we illustrate and propose some first testable ideas about how, when, and where facilitation may act as a cohesive force for ecological speciation. These hypotheses and the modelling framework proposed should stimulate further empirical and theoretical research examining the role of both competitive and positive interactions in the formation of incipient species.


Author(s):  
Deirdre O'Sullivan ◽  
Michael Moore ◽  
Susan Byrne ◽  
Andreas O. Reiff ◽  
Susanna Felsenstein

AbstractAcute disseminated encephalomyelitis in association with extensive longitudinal transverse myelitis is reported in a young child with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody with heterozygous NLRP3 missense mutations; p.(Arg488Lys) and p.(Ser159Ile). This case may well present an exceptional coincidence, but may describe a yet unrecognized feature of the spectrum of childhood onset cryopyrinopathies that contribute to the understanding of the genetic basis for anti-MOG antibody positive encephalomyelitis. Based on this observation, a larger scale study investigating the role of NLRP3 and other inflammasomes in this entity would provide important pathophysiological insights and potentially novel avenues for treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Ding ◽  
Jin Wang ◽  
Miaoxin Huang ◽  
Zhangpeng Chen ◽  
Jing Liu ◽  
...  

AbstractMicroglia play a key role in regulating synaptic remodeling in the central nervous system. Activation of classical complement pathway promotes microglia-mediated synaptic pruning during development and disease. CD47 protects synapses from excessive pruning during development, implicating microglial SIRPα, a CD47 receptor, in synaptic remodeling. However, the role of microglial SIRPα in synaptic pruning in disease remains unclear. Here, using conditional knock-out mice, we show that microglia-specific deletion of SIRPα results in decreased synaptic density. In human tissue, we observe that microglial SIRPα expression declines alongside the progression of Alzheimer’s disease. To investigate the role of SIRPα in neurodegeneration, we modulate the expression of microglial SIRPα in mouse models of Alzheimer’s disease. Loss of microglial SIRPα results in increased synaptic loss mediated by microglia engulfment and enhanced cognitive impairment. Together, these results suggest that microglial SIRPα regulates synaptic pruning in neurodegeneration.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 101054
Author(s):  
Laura Leoni ◽  
Valentina Daponte ◽  
Francesca Tonelli ◽  
Roberta Gioia ◽  
Silvia Cotti ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuan Zong ◽  
Ying Zhang ◽  
Xinxin Peng ◽  
Dongyan Cao ◽  
Mei Yu ◽  
...  

AbstractYolk sac tumors (YSTs) are a major histological subtype of malignant ovarian germ cell tumors with a relatively poor prognosis. The molecular basis of this disease has not been thoroughly characterized at the genomic level. Here we perform whole-exome and RNA sequencing on 41 clinical tumor samples from 30 YST patients, with distinct responses to cisplatin-based chemotherapy. We show that microsatellite instability status and mutational signatures are informative of chemoresistance. We identify somatic driver candidates, including significantly mutated genes KRAS and KIT and copy-number alteration drivers, including deleted ARID1A and PARK2, and amplified ZNF217, CDKN1B, and KRAS. YSTs have very infrequent TP53 mutations, whereas the tumors from patients with abnormal gonadal development contain both KRAS and TP53 mutations. We further reveal a role of OVOL2 overexpression in YST resistance to cisplatin. This study lays a critical foundation for understanding key molecular aberrations in YSTs and developing related therapeutic strategies.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


2019 ◽  
Vol 24 ◽  
pp. 121-128
Author(s):  
Sigal Ben-Zaken ◽  
Yoav Meckel ◽  
Dan Nemet ◽  
Alon Eliakim

The ACSL A/G polymorphism is associated with endurance trainability. Previous studies have demonstrated that homozygotes of the minor AA allele had a reduced maximal oxygen consumption response to training compared to the common GG allele homozygotes, and that the ACSL A/G single nucleotide polymorphism explained 6.1% of the variance in the VO2max response to endurance training. The contribution of ACSL single nucleotide polymorphism to endurance trainability was shown in nonathletes, however, its potential role in professional athletes is not clear. Moreover, the genetic basis to anaerobic trainability is even less studied. Therefore, the aim of the present study was to examine the prevalence of ACSL single nucleotide polymorphism among professional Israeli long distance runners (n=59), middle distance runners (n=31), sprinters and jumpers (n=48) and non-athletic controls (n=60). The main finding of the present study was that the ACSL1 AA genotype, previously shown to be associated with reduced endurance trainability, was not higher among sprinters and jumpers (15%) compared to middle- (16%) and long-distance runners (15%). This suggests that in contrast to previous studies indicating that the ACSL1 single nucleotide polymorphism may influence endurance trainability among non-athletic individuals, the role of this polymorphism among professional athletes is still not clear.


Sign in / Sign up

Export Citation Format

Share Document