scholarly journals G-Protein coupled Purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodelling in microglia

2021 ◽  
Author(s):  
Hariharakrishnan Chidambaram ◽  
Rashmi Das ◽  
Subashchandrabose Chinnathambi

In Alzheimers disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells that are involved in constant surveillance and are activated by the extracellular deposits. Purinergic receptors are involved in chemotactic migration of microglial cells towards the site of inflammation. In our recent study, we found that microglial P2Y12 receptor has been involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. In this study, we have showed the interaction of repeat-domain of Tau (TauRD) with microglial P2Y12 receptor and analysed the corresponding residues for interaction by various in-silico approaches. In cellular studies, TauRD was found to interact with microglial P2Y12R and induces its cellular expression as confirmed by co-immunoprecipitation and western blot analysis respectively. Similarly, immunofluorescence microscopic studies emphasized that TauRD were phagocytosed by microglial P2Y12R via the membrane-associated actin remodelling as filopodia extension. Furthermore, the P2Y12R-mediated TauRD internalization has activated the microglia with an increase in the Iba1 level and TauRD become accumulated at peri-nuclear region as localized with Iba1. Altogether, microglial P2Y12R interacts with TauRD and mediates directed migration and activation for its internalization.

2011 ◽  
Vol 105 (01) ◽  
pp. 96-106 ◽  
Author(s):  
Jackie Glenn ◽  
Ann White ◽  
Sue Fox ◽  
Hans van Giezen ◽  
Sven Nylander ◽  
...  

SummaryP2Y12 receptor antagonists are antithrombotic agents that inhibit platelet function by blocking the effects of adenosine diphosphate (ADP) at P2Y12 receptors. However, some P2Y12 receptor antagonists may affect platelet function through additional mechanisms. It was the objective of this study to investigate the possibility that P2Y12 antagonists inhibit platelet function through interaction with G-protein-coupled receptors other than P2Y12 receptors. We compared the effects of cangrelor, ticagrelor and the prasugrel active metabolite on platelet aggregation and on phosphorylation of vasodilator-stimulated phosphoprotein (VASP). We compared their effects with those of selective IP, EP4 and A2A agonists, which act at Gs-coupled receptors. All three P2Y12 antagonists were strong inhibitors of ADP-induced platelet aggregation but only partial inhibitors of aggregation induced by thrombin receptor activating peptide (TRAP) or the thromboxane A2 mimetic U46619. Further, after removing ADP and its metabolites using apyrase and adenosine deaminase, the P2Y12 antagonists produced only minor additional inhibition of TRAP or U46619-induced aggregation. Conversely, the Gs-coupled receptor agonists always produced strong inhibition of aggregation irrespective of whether ADP was removed. Other experiments using selective receptor agonists and antagonists provided no evidence of any of the P2Y12 antagonists acting through PAR1, TP, IP, EP4, A2A or EP3 receptors. All three P2Y12 antagonists enhanced VASPphosphorylation to a small and equal extent but the effects were much smaller than those of the IP, EP4 and A2A agonists. The effects of cangrelor, ticagrelor and prasugrel on platelet function are mediated mainly through P2Y12 receptors and not through another G-protein-coupled receptor.


2016 ◽  
Vol 113 (43) ◽  
pp. 12162-12167 ◽  
Author(s):  
Yinglong Miao ◽  
J. Andrew McCammon

G-protein–coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor–nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.


2021 ◽  
Author(s):  
Hannes Schihada ◽  
Rawan Shekhani ◽  
Gunnar Schulte

AbstractHeterotrimeric G proteins constitute the primary transducers of G protein-coupled receptor (GPCR) signaling. Besides mediating ligand-induced GPCR activation, G proteins transduce basal levels of activity in various physiological and pathophysiological settings evoked by constitutively active, native GPCRs or disease-related receptor mutants. Several generations of optical biosensors were developed and optimized to monitor GPCR ligand-induced G protein activation, however, quantitative approaches to detect constitutively active GPCRs are not available. Here, we designed and validated a set of eight bioluminescence-resonance-energy-transfer (BRET)-based G protein sensors, covering all four major families of G proteins, and established a protocol to identify constitutive GPCR/G protein signaling in living cells. These sensors rely on the encoding of all three G protein subunits on a single plasmid, enabling their cellular expression at desired relative levels and resulting in reduced signal variability in mammalian cells. Based on this sensor platform, we further present here an experimental protocol to quantify constitutive signaling of native and mutated GPCRs through these heterotrimeric transducers. This approach will aid in the characterization of constitutively active GPCRs and the exploration of their role in health and disease.One Sentence SummaryThis Resource article describes the validation of a biophysical approach to directly assess the constitutive signaling activity of G protein-coupled receptors through heterotrimeric G proteins in living cells using optical biosensors.


Author(s):  
Matthew Rosa ◽  
Timothy Noel ◽  
Matthew Harris ◽  
Graham Ladds

Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.


2013 ◽  
Vol 41 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Margaret R. Cunningham ◽  
Shaista P. Nisar ◽  
Stuart J. Mundell

Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y1 and P2Y12. Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y1 and P2Y12 receptor regulation, with particular emphasis on the structural motifs within the P2Y12 receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.


2001 ◽  
Vol 86 (07) ◽  
pp. 222-232 ◽  
Author(s):  
Christian Gachet

SummaryADP plays a crucial role in haemostasis and thrombosis and its receptors are potential targets for antithrombotic drugs. Two G-protein coupled P2 receptors contribute to platelet aggregation: the P2Y1 receptor initiates aggregation through mobilisation of calcium stores, while the more recently identified P2Y12 receptor coupled to adenylyl cyclase inhibition is essential for a full aggregation response to ADP and the stabilisation of aggregates. The latter is defective in certain patients with a selective congenital deficiency of aggregation to ADP. It is also the target of the antithrombotic drug clopidogrel and of ATP analogues and other compounds currently under evaluation. In addition, the P2X1 ionotropic receptor is present in platelets but its role is not yet completely known. Studies in P2Y1 knock-out mice and experimental thrombosis models using selective P2Y1 antagonists have shown that the P2Y1 receptor, like the P2Y12 receptor, is a potential target for new antithrombotic drugs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3511-3511
Author(s):  
Jane E Norman ◽  
Matthew L Jones ◽  
Neil V Morgan ◽  
Jacqui Stockley ◽  
Martina E Daly ◽  
...  

Abstract Introduction G-protein coupled receptors (GPCRs) are critical mediators of platelet responses to stimulatory and inhibitory agonists. In rare families with mild bleeding, it is recognised that heterozygous loss of function variations in platelet GPCR genes may diminish platelet agonist responses. However, the population prevalence of loss of function variations in these genes is unknown. We have utilised population databases and next generation sequencing from patients with inherited platelet function disorders (IPFD) to describe the extent of genetic variation in the major platelet GPCRs. We have also used predictive computation and a new consensus structure of GPCRs (Venkatakrishnan AJ et al.Nature 2013; 494) to estimate which variations confer loss of function. Methods We interrogated the ESP and 1000 genomes population datasets for single nucleotide (SNV) and insertion-deletion (indel) variations in the genes encoding 6 stimulatory (ADRA2A, F2R, F2RL3, P2RY1, P2RY12, TBXA2R) and 2 inhibitory (PTGER4, PTGIR) platelet GPCRs. Coding and splice region variations within the relevant Refseq transcripts were functionally annotated using the Polyphen-2, SIFT and FATHMM algorithms. Missense variations within GPCR transmembrane (TM) domains, were annotated manually by expressing the substitutions in Ballesteros-Weinstein nomenclature before comparison with the consensus GPCR structure. Missense variations in the N- and C-terminal regions (NR and CR) and the intra- and extra- cellular loops (ICL and ECL) were annotated by identifying the position of the substituted residue relative to experimentally confirmed or putative functional motifs. An identical analysis was performed using exome data from 31 unrelated patients with IPFD recruited through the UK GAPP study with clinical bleeding and abnormal platelet function by light transmission aggregation. Results In 7745 individuals from the ESP and 1000 genomes cohorts, we identified 332 SNV in the target regions of the 8 GPCR genes (40.5 variations/kb) comprising 183 non-synonymous and 148 synonymous coding variants and 4 variations within intronic splice regions. There were no indel variations. Functional annotation of the non-synonymous SNVs identified 41 that potentially conferred loss of function, distributed in all the target GPCRs but with low population frequency (minor allele frequency range 1-0.008%). Five SNVs affected the NT, including Gly48Asp and Arg47His substitutions at the PAR4 receptor thrombin/trypsin cleavage site. There were 12 SNVs affecting the TM domains, of which 4 were predicted to disrupt GPCR folding, including a TPα receptor Pro305Leu substitution within the structural N/DPXXY motif and the P2Y12 receptor Met108Leu and Thr283Ile substitutions predicted to disrupt non-covalent TM network contacts. There were 14 SNVs affecting the ICL including the P2Y12 receptor Asp121Asn substitution in the E/DRY motif and prostacyclin (IP1) receptor Arg212Cys and Arg215Cys substitutions predicted to disrupt Gs coupling. Ten functional SNVs affected the CT. In 31 IPFD patients with complex laboratory phenotypes that could not be explained by loss of a single GPCR, there were 8 non-synonymous SNVs, of which 5 were predicted to confer loss of function (table). Discussion In unselected populations, heterozygous loss of function GPCR gene variations which potentially affect platelet agonist responses are individually rare, but collectively numerous. Loss of function GPCR variations were also present in patients with underlying IPFD. These data illustrate that variations in platelet regulatory genes may act as modifiers of laboratory phenotype in patients with underlying IPFD and that the net phenotype may be the product of multiple gene defects. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 280 (35) ◽  
pp. 30924-30934 ◽  
Author(s):  
Atsushi Jinno-Oue ◽  
Nobuaki Shimizu ◽  
Yasushi Soda ◽  
Atsushi Tanaka ◽  
Takahiro Ohtsuki ◽  
...  

1984 ◽  
Vol 39 (5) ◽  
pp. 595-603 ◽  
Author(s):  
H. Terubayashi ◽  
Y. Murabe ◽  
H. Fujisawa ◽  
M. Itoi ◽  
Y. Ibata

Sign in / Sign up

Export Citation Format

Share Document