scholarly journals Decomposing age effects in EEG alpha power

2021 ◽  
Author(s):  
Marius Tröndle ◽  
Tzvetan Popov ◽  
Andreas Pedroni ◽  
Christian Pfeiffer ◽  
Zofia Barańczuk-Turska ◽  
...  

Increasing life expectancy is prompting the need to understand how the brain changes during healthy aging. Research utilizing Electroencephalography (EEG) has found that the power of alpha oscillations decrease from adulthood on. However, non-oscillatory (aperiodic) components in the data may confound results and thus require re-investigation of these findings. The present report aims at analyzing a pilot and two additional independent samples (total N = 533) of resting-state EEG from healthy young and elderly individuals. A newly developed algorithm will be utilized that allows the decomposition of the measured signal into aperiodic and aperiodic-adjusted signal components. By using multivariate sequential Bayesian updating of the age effect in each signal component, evidence across the datasets will be accumulated. It is hypothesized that previously reported age-related alpha power differences will disappear when absolute power is adjusted for the aperiodic signal component. Consequently, age-related differences in the intercept and slope of the aperiodic signal component are expected. Importantly, using a battery of neuropsychological tests, we will assess how the previously reported relationship between cognitive functions and alpha oscillations changes when taking the aperiodic signal into account; this will be done on data of the young and aged individuals separately. The aperiodic signal components and adjusted alpha parameters could potentially offer a promising biomarker for cognitive decline, thus finally the test–retest reliability of the aperiodic and aperiodic-adjusted signal components will be assessed.

2020 ◽  
Author(s):  
Marius Tröndle ◽  
Tzvetan Popov ◽  
Nicolas Langer

AbstractDuring childhood and adolescence, the human brain undergoes various micro- and macroscopic changes. Understanding the neurophysiological changes within this reorganizational process is crucial, as many major psychiatric disorders emerge during this critical phase of life. In electroencephalography (EEG), a widely studied signal component are alpha oscillations (~8-13 Hz), which have been linked to developmental changes throughout the lifespan. Previous neurophysiological studies have demonstrated an increase of the alpha peak frequency and a decrease of alpha power to be related to brain maturation. The latter results have been questioned by recent developments in EEG signal processing techniques, as it could be demonstrated that aperiodic (non-oscillatory) components in the EEG signal conflate findings on periodic (oscillatory) changes, and thus need to be decomposed accordingly. We therefore analyzed a large, openly available pediatric dataset of 1485 children and adolescents in the age range of 5 to 21 years, in order to clarify the role of alpha oscillations and aperiodic signal components in this period of life. We first replicated previous findings of an increase of alpha peak frequency with age. Our results further suggest that alpha oscillatory power decreases with increasing age, however, when controlling for the aperiodic signal component, this effect inverted such as the aperiodic adjusted alpha power parameters significantly increase with advanced brain maturation, while the aperiodic signal component flattens and its offset decreases. Thus, interpretations of these oscillatory changes should be done with caution and incorporate changes in the aperiodic signal. These findings highlight the importance of taking aperiodic signal components into account when investigating age related changes of EEG spectral power parameters.


2015 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: An organism’s lifespan is inevitably accompanied by the aging process, which involves functional decline, a steady increase of a plethora of chronic diseases, and ultimately death. Thus, it has been an ongoing dream of mankind to improve healthspan and extend life.CONTENT: There are only a few proposed aging interventions: caloric restriction, exercise, and the use of low-molecular-weight compounds, including spermidine, metformin, resveratrol, and rapamycin. Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Resveratrol have been shown to prevent and reduce the severity of age-related diseases such as atherosclerosis, stroke, myocardial infarct, diabetes, neurodegenerative diseases, osteoarthritis, tumors and metabolic syndrome, along with their ability to extend lifespan.SUMMARY: The purpose of aging research is the identification of interventions that may avoid or ameliorate the ravages of time. In other words, the quest is for healthy aging, where improved longevity is coupled to a corresponding healthspan extension. It is only by extending the healthy human lifespan that we will truly meet the premise of the Roman poet Cicero: “No one is so old as to think that he may not live a year.”KEYWORDS: aging, caloric restriction, mimetic, healthspan, sirtuin activator


2020 ◽  
pp. 1-11 ◽  
Author(s):  
S. Guyonnet ◽  
Y. Rolland ◽  
C. Takeda ◽  
P.-J. Ousset ◽  
I. Ader ◽  
...  

Background: The Geroscience field focuses on the core biological mechanisms of aging, which are involved in the onset of age-related diseases, as well as declines in intrinsic capacity (IC) (body functions) leading to dependency. A better understanding on how to measure the true age of an individual or biological aging is an essential step that may lead to the definition of putative markers capable of predicting healthy aging. Objectives: The main objective of the INStitute for Prevention healthy agIng and medicine Rejuvenative (INSPIRE) Platform initiative is to build a program for Geroscience and healthy aging research going from animal models to humans and the health care system. The specific aim of the INSPIRE human translational cohort (INSPIRE-T cohort) is to gather clinical, digital and imaging data, and perform relevant and extensive biobanking to allow basic and translational research on humans. Methods: The INSPIRE-T cohort consists in a population study comprising 1000 individuals in Toulouse and surrounding areas (France) of different ages (20 years or over - no upper limit for age) and functional capacity levels (from robustness to frailty, and even dependency) with follow-up over 10 years. Diversified data are collected annually in research facilities or at home according to standardized procedures. Between two annual visits, IC domains are monitored every 4-month by using the ICOPE Monitor app developed in collaboration with WHO. Once IC decline is confirmed, participants will have a clinical assessment and blood sampling to investigate markers of aging at the time IC declines are detected. Biospecimens include blood, urine, saliva, and dental plaque that are collected from all subjects at baseline and then, annually. Nasopharyngeal swabs and cutaneous surface samples are collected in a large subgroup of subjects every two years. Feces, hair bulb and skin biopsy are collected optionally at the baseline visit and will be performed again during the longitudinal follow up. Expected Results: Recruitment started on October 2019 and is expected to last for two years. Bio-resources collected and explored in the INSPIRE-T cohort will be available for academic and industry partners aiming to identify robust (set of) markers of aging, age-related diseases and IC evolution that could be pharmacologically or non-pharmacologically targetable. The INSPIRE-T will also aim to develop an integrative approach to explore the use of innovative technologies and a new, function and person-centered health care pathway that will promote a healthy aging.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Warren Ladiges ◽  

Old cats develop chronic diseases similar to diseases in older people. One-fourth of American households own cats, and almost half are more than 7 years old. Cats share the same environment and are exposed to many of the same chemical stresses. In addition, genomic diversity and population stratification are similar to that occurring in people. With these comparative features, the aging cat represents a geroscience model to investigate the pathogenesis and therapeutic interventions for aging. However, cats are generally not recognized as a translational model for aging research mainly because of the lack of knowledge and appreciation within the scientific community. In addition, cat owners are not aware of any research programs designed to enhance healthy aging in their pets because none exist. Much work is needed to inform and educate the scientific community as well as cat owners about the power of aging cats as a transformative model to investigate aging and age-related diseases that will benefit both human and feline health. Keywords: Aging cats, age-related diseases, healthy aging, geroscience


2019 ◽  
Author(s):  
Lu Zeng ◽  
Jialiang Yang ◽  
Shouneng Peng ◽  
Jun Zhu ◽  
Bin Zhang ◽  
...  

AbstractA key goal of aging research is to understand mechanisms underlying healthy aging and use them to develop methods to promote the human healthspan. One approach is to identify gene regulations differentiating healthy aging from aging in the general population (i.e., “common” aging). In this study, we leveraged GTEx (Genotype-Tissue Expression) project data to investigate “healthy” and “common” aging in humans and their interconnection with diseases.We selected GTEx donors who were not annotated with diseases to approximate a “healthy” aging cohort. We then compared the age-associated genes derived from this cohort with age-associated genes from our “common” aging cohort which included all GTEx donors; we also compared the “healthy” and “common” aging gene expressions with various disease-associated gene expression to elucidate the relationships among “healthy”, “common” aging and disease. Our analyses showed that 1. “healthy” and “common” aging shared a large number of gene regulations; 2. Despite the substantial commonality, “healthy” and “common” aging genes also showed distinct function enrichment, and “common” aging genes had a higher enrichment for disease genes; 3. Disease-associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with the “healthy” aging gene regulations.In summary, our work highlights several unique features of human “healthy” aging program. This new knowledge can be used for the development of therapeutics to promote human healthspan.


2020 ◽  
Author(s):  
Deniz Kumral ◽  
Elena Cesnaite ◽  
Frauke Beyer ◽  
Simon M. Hofmann ◽  
Tilman Hensch ◽  
...  

AbstractWhite matter hyperintensities (WMHs) in the cerebral white matter and attenuation of alpha oscillations (AO; 7–13 Hz) occur with the advancing age. However, a crucial question remains, whether changes in AO relate to aging per se or they rather reflect the impact of age-related neuropathology like WMHs. In this study, using a large cohort (N=907) of elderly participants (60-80 years), we assessed relative alpha power (AP), individual alpha peak frequency (IAPF) and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. In contrast, we observed no significant relation of probability of WMH occurrence with IAPF and LRTC. We argue that the WMH-associated increase of AP reflects generalized and likely compensatory changes of AO leading to a larger number of synchronously recruited neurons.


2018 ◽  
Author(s):  
Pau A. Packard ◽  
Tineke K. Steiger ◽  
Lluis Fuentemilla ◽  
Nico Bunzeck

AbstractLong-term memory can improve when incoming information is congruent with known semantic information. This so-called congruence effect has widely been shown in younger adults but age-related changes and neural mechanisms remain unclear. Here, congruence improved recognition memory in younger and older adults (i.e. congruency effect), but – importantly – this effect decreased with age. Electroencephalography data show that, in both groups, congruence led to widespread differences in event-related potentials (ERPs) and alpha-beta oscillations (8-30 Hz), known to support semantic processing. Importantly, these ERP differences predicted increases in memory performance, especially for congruent items. Finally, age-related differences in memory were accompanied by a positive ERP and later decrease in theta-alpha (5-13 Hz) during encoding, which were greater in the younger group. Together, although semantic congruence generally increases long-term memory, the effect is less pronounced in the elderly. At the neural level, theta-alpha oscillations, previously linked to memory and attentional processes, provide a mechanistic explanation for such an age-related effect.


2021 ◽  
Author(s):  
Andrea Scharf ◽  
Annette Limke ◽  
Karl-Heinz Guehrs ◽  
Anna von Mikecz

AbstractDelaying aging while prolonging health and lifespan is a major goal in aging research. While many resources have been allocated to find positive interventions with promising results, negative interventions such as pollution and their accelerating effect on age-related degeneration and disease have been mostly neglected. Here, we used the short-lived model organism C. elegans to analyze whether two candidate pollutants interfere with positive interventions by corrupting general aging pathways. We took advantage of the immense data sets describing the age-related remodeling of the proteome including increased protein insolubilities to complement our analysis. We show that the emergent pollutant silica nanoparticles (NP) and the classic xenobiotic inorganic mercury reduce lifespan and cause a premature protein aggregation phenotype. Silica NPs rescaled the longevity effect of genetic interventions targeting the IGF-1/insulin-like signaling pathway. Comparative mass spectrometry revealed that increased insolubility of proteins with important functions in proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The presented data demonstrate that pollutants corrupt intrinsic aging pathways, which results in premature aging phenotypes. Reducing pollution is therefore an important step to increase healthy aging and prolong life expectancies on a population level in humans and animals.


2019 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Ashley Merkin ◽  
Nigel C Rogasch ◽  
John G Semmler ◽  
...  

AbstractWorking memory (WM) is vulnerable to age-related decline, particularly under high loads. Visual alpha oscillations contribute to WM performance in younger adults, and although alpha decreases in power and frequency with age, it is unclear if alpha activity supports WM in older adults. We recorded electroencephalography (EEG) while 24 younger (aged 18-35 years) and 30 older (aged 50-86) adults performed a modified Sternberg task with varying load conditions. Older adults demonstrated slower reaction times at all loads, but there were no significant age differences in accuracy. Regardless of age, alpha power decreased, and alpha frequency increased with load during encoding, and the magnitude of alpha suppression during retention was larger at higher loads. While alpha power during retention was lower than fixation in older, but not younger adults, the relative change from fixation was not significantly different between age groups. Individual differences in alpha power did not predict performance for either age groups or at any WM loads. Future research should elaborate the functional significance of alpha power and frequency changes that accompany WM performance in cognitive ageing.


Sign in / Sign up

Export Citation Format

Share Document